Solve for x
x = -\frac{5}{3} = -1\frac{2}{3} \approx -1.666666667
x = \frac{13}{3} = 4\frac{1}{3} \approx 4.333333333
Graph
Share
Copied to clipboard
9x^{2}-24x-65=0
Subtract 65 from both sides.
a+b=-24 ab=9\left(-65\right)=-585
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 9x^{2}+ax+bx-65. To find a and b, set up a system to be solved.
1,-585 3,-195 5,-117 9,-65 13,-45 15,-39
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -585.
1-585=-584 3-195=-192 5-117=-112 9-65=-56 13-45=-32 15-39=-24
Calculate the sum for each pair.
a=-39 b=15
The solution is the pair that gives sum -24.
\left(9x^{2}-39x\right)+\left(15x-65\right)
Rewrite 9x^{2}-24x-65 as \left(9x^{2}-39x\right)+\left(15x-65\right).
3x\left(3x-13\right)+5\left(3x-13\right)
Factor out 3x in the first and 5 in the second group.
\left(3x-13\right)\left(3x+5\right)
Factor out common term 3x-13 by using distributive property.
x=\frac{13}{3} x=-\frac{5}{3}
To find equation solutions, solve 3x-13=0 and 3x+5=0.
9x^{2}-24x=65
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
9x^{2}-24x-65=65-65
Subtract 65 from both sides of the equation.
9x^{2}-24x-65=0
Subtracting 65 from itself leaves 0.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 9\left(-65\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -24 for b, and -65 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 9\left(-65\right)}}{2\times 9}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576-36\left(-65\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-24\right)±\sqrt{576+2340}}{2\times 9}
Multiply -36 times -65.
x=\frac{-\left(-24\right)±\sqrt{2916}}{2\times 9}
Add 576 to 2340.
x=\frac{-\left(-24\right)±54}{2\times 9}
Take the square root of 2916.
x=\frac{24±54}{2\times 9}
The opposite of -24 is 24.
x=\frac{24±54}{18}
Multiply 2 times 9.
x=\frac{78}{18}
Now solve the equation x=\frac{24±54}{18} when ± is plus. Add 24 to 54.
x=\frac{13}{3}
Reduce the fraction \frac{78}{18} to lowest terms by extracting and canceling out 6.
x=-\frac{30}{18}
Now solve the equation x=\frac{24±54}{18} when ± is minus. Subtract 54 from 24.
x=-\frac{5}{3}
Reduce the fraction \frac{-30}{18} to lowest terms by extracting and canceling out 6.
x=\frac{13}{3} x=-\frac{5}{3}
The equation is now solved.
9x^{2}-24x=65
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{9x^{2}-24x}{9}=\frac{65}{9}
Divide both sides by 9.
x^{2}+\left(-\frac{24}{9}\right)x=\frac{65}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-\frac{8}{3}x=\frac{65}{9}
Reduce the fraction \frac{-24}{9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{8}{3}x+\left(-\frac{4}{3}\right)^{2}=\frac{65}{9}+\left(-\frac{4}{3}\right)^{2}
Divide -\frac{8}{3}, the coefficient of the x term, by 2 to get -\frac{4}{3}. Then add the square of -\frac{4}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{8}{3}x+\frac{16}{9}=\frac{65+16}{9}
Square -\frac{4}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{8}{3}x+\frac{16}{9}=9
Add \frac{65}{9} to \frac{16}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{4}{3}\right)^{2}=9
Factor x^{2}-\frac{8}{3}x+\frac{16}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{3}\right)^{2}}=\sqrt{9}
Take the square root of both sides of the equation.
x-\frac{4}{3}=3 x-\frac{4}{3}=-3
Simplify.
x=\frac{13}{3} x=-\frac{5}{3}
Add \frac{4}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}