Solve for x (complex solution)
x=\frac{1+8\sqrt{17}i}{9}\approx 0.111111111+3.664982778i
x=\frac{-8\sqrt{17}i+1}{9}\approx 0.111111111-3.664982778i
Graph
Share
Copied to clipboard
9x^{2}-2x=-121
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
9x^{2}-2x-\left(-121\right)=-121-\left(-121\right)
Add 121 to both sides of the equation.
9x^{2}-2x-\left(-121\right)=0
Subtracting -121 from itself leaves 0.
9x^{2}-2x+121=0
Subtract -121 from 0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 9\times 121}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -2 for b, and 121 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 9\times 121}}{2\times 9}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-36\times 121}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-2\right)±\sqrt{4-4356}}{2\times 9}
Multiply -36 times 121.
x=\frac{-\left(-2\right)±\sqrt{-4352}}{2\times 9}
Add 4 to -4356.
x=\frac{-\left(-2\right)±16\sqrt{17}i}{2\times 9}
Take the square root of -4352.
x=\frac{2±16\sqrt{17}i}{2\times 9}
The opposite of -2 is 2.
x=\frac{2±16\sqrt{17}i}{18}
Multiply 2 times 9.
x=\frac{2+16\sqrt{17}i}{18}
Now solve the equation x=\frac{2±16\sqrt{17}i}{18} when ± is plus. Add 2 to 16i\sqrt{17}.
x=\frac{1+8\sqrt{17}i}{9}
Divide 2+16i\sqrt{17} by 18.
x=\frac{-16\sqrt{17}i+2}{18}
Now solve the equation x=\frac{2±16\sqrt{17}i}{18} when ± is minus. Subtract 16i\sqrt{17} from 2.
x=\frac{-8\sqrt{17}i+1}{9}
Divide 2-16i\sqrt{17} by 18.
x=\frac{1+8\sqrt{17}i}{9} x=\frac{-8\sqrt{17}i+1}{9}
The equation is now solved.
9x^{2}-2x=-121
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{9x^{2}-2x}{9}=-\frac{121}{9}
Divide both sides by 9.
x^{2}-\frac{2}{9}x=-\frac{121}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-\frac{2}{9}x+\left(-\frac{1}{9}\right)^{2}=-\frac{121}{9}+\left(-\frac{1}{9}\right)^{2}
Divide -\frac{2}{9}, the coefficient of the x term, by 2 to get -\frac{1}{9}. Then add the square of -\frac{1}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{9}x+\frac{1}{81}=-\frac{121}{9}+\frac{1}{81}
Square -\frac{1}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{9}x+\frac{1}{81}=-\frac{1088}{81}
Add -\frac{121}{9} to \frac{1}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{9}\right)^{2}=-\frac{1088}{81}
Factor x^{2}-\frac{2}{9}x+\frac{1}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{9}\right)^{2}}=\sqrt{-\frac{1088}{81}}
Take the square root of both sides of the equation.
x-\frac{1}{9}=\frac{8\sqrt{17}i}{9} x-\frac{1}{9}=-\frac{8\sqrt{17}i}{9}
Simplify.
x=\frac{1+8\sqrt{17}i}{9} x=\frac{-8\sqrt{17}i+1}{9}
Add \frac{1}{9} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}