Solve for x
x=\frac{\sqrt{7}}{3}+1\approx 1.881917104
x=-\frac{\sqrt{7}}{3}+1\approx 0.118082896
Graph
Share
Copied to clipboard
9x^{2}-18x=-2
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
9x^{2}-18x-\left(-2\right)=-2-\left(-2\right)
Add 2 to both sides of the equation.
9x^{2}-18x-\left(-2\right)=0
Subtracting -2 from itself leaves 0.
9x^{2}-18x+2=0
Subtract -2 from 0.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 9\times 2}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -18 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 9\times 2}}{2\times 9}
Square -18.
x=\frac{-\left(-18\right)±\sqrt{324-36\times 2}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-18\right)±\sqrt{324-72}}{2\times 9}
Multiply -36 times 2.
x=\frac{-\left(-18\right)±\sqrt{252}}{2\times 9}
Add 324 to -72.
x=\frac{-\left(-18\right)±6\sqrt{7}}{2\times 9}
Take the square root of 252.
x=\frac{18±6\sqrt{7}}{2\times 9}
The opposite of -18 is 18.
x=\frac{18±6\sqrt{7}}{18}
Multiply 2 times 9.
x=\frac{6\sqrt{7}+18}{18}
Now solve the equation x=\frac{18±6\sqrt{7}}{18} when ± is plus. Add 18 to 6\sqrt{7}.
x=\frac{\sqrt{7}}{3}+1
Divide 18+6\sqrt{7} by 18.
x=\frac{18-6\sqrt{7}}{18}
Now solve the equation x=\frac{18±6\sqrt{7}}{18} when ± is minus. Subtract 6\sqrt{7} from 18.
x=-\frac{\sqrt{7}}{3}+1
Divide 18-6\sqrt{7} by 18.
x=\frac{\sqrt{7}}{3}+1 x=-\frac{\sqrt{7}}{3}+1
The equation is now solved.
9x^{2}-18x=-2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{9x^{2}-18x}{9}=-\frac{2}{9}
Divide both sides by 9.
x^{2}+\left(-\frac{18}{9}\right)x=-\frac{2}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-2x=-\frac{2}{9}
Divide -18 by 9.
x^{2}-2x+1=-\frac{2}{9}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=\frac{7}{9}
Add -\frac{2}{9} to 1.
\left(x-1\right)^{2}=\frac{7}{9}
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{7}{9}}
Take the square root of both sides of the equation.
x-1=\frac{\sqrt{7}}{3} x-1=-\frac{\sqrt{7}}{3}
Simplify.
x=\frac{\sqrt{7}}{3}+1 x=-\frac{\sqrt{7}}{3}+1
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}