Factor
\left(x-20\right)\left(9x+25\right)
Evaluate
\left(x-20\right)\left(9x+25\right)
Graph
Share
Copied to clipboard
a+b=-155 ab=9\left(-500\right)=-4500
Factor the expression by grouping. First, the expression needs to be rewritten as 9x^{2}+ax+bx-500. To find a and b, set up a system to be solved.
1,-4500 2,-2250 3,-1500 4,-1125 5,-900 6,-750 9,-500 10,-450 12,-375 15,-300 18,-250 20,-225 25,-180 30,-150 36,-125 45,-100 50,-90 60,-75
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -4500.
1-4500=-4499 2-2250=-2248 3-1500=-1497 4-1125=-1121 5-900=-895 6-750=-744 9-500=-491 10-450=-440 12-375=-363 15-300=-285 18-250=-232 20-225=-205 25-180=-155 30-150=-120 36-125=-89 45-100=-55 50-90=-40 60-75=-15
Calculate the sum for each pair.
a=-180 b=25
The solution is the pair that gives sum -155.
\left(9x^{2}-180x\right)+\left(25x-500\right)
Rewrite 9x^{2}-155x-500 as \left(9x^{2}-180x\right)+\left(25x-500\right).
9x\left(x-20\right)+25\left(x-20\right)
Factor out 9x in the first and 25 in the second group.
\left(x-20\right)\left(9x+25\right)
Factor out common term x-20 by using distributive property.
9x^{2}-155x-500=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-155\right)±\sqrt{\left(-155\right)^{2}-4\times 9\left(-500\right)}}{2\times 9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-155\right)±\sqrt{24025-4\times 9\left(-500\right)}}{2\times 9}
Square -155.
x=\frac{-\left(-155\right)±\sqrt{24025-36\left(-500\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-155\right)±\sqrt{24025+18000}}{2\times 9}
Multiply -36 times -500.
x=\frac{-\left(-155\right)±\sqrt{42025}}{2\times 9}
Add 24025 to 18000.
x=\frac{-\left(-155\right)±205}{2\times 9}
Take the square root of 42025.
x=\frac{155±205}{2\times 9}
The opposite of -155 is 155.
x=\frac{155±205}{18}
Multiply 2 times 9.
x=\frac{360}{18}
Now solve the equation x=\frac{155±205}{18} when ± is plus. Add 155 to 205.
x=20
Divide 360 by 18.
x=-\frac{50}{18}
Now solve the equation x=\frac{155±205}{18} when ± is minus. Subtract 205 from 155.
x=-\frac{25}{9}
Reduce the fraction \frac{-50}{18} to lowest terms by extracting and canceling out 2.
9x^{2}-155x-500=9\left(x-20\right)\left(x-\left(-\frac{25}{9}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 20 for x_{1} and -\frac{25}{9} for x_{2}.
9x^{2}-155x-500=9\left(x-20\right)\left(x+\frac{25}{9}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
9x^{2}-155x-500=9\left(x-20\right)\times \frac{9x+25}{9}
Add \frac{25}{9} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
9x^{2}-155x-500=\left(x-20\right)\left(9x+25\right)
Cancel out 9, the greatest common factor in 9 and 9.
x ^ 2 -\frac{155}{9}x -\frac{500}{9} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 9
r + s = \frac{155}{9} rs = -\frac{500}{9}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{155}{18} - u s = \frac{155}{18} + u
Two numbers r and s sum up to \frac{155}{9} exactly when the average of the two numbers is \frac{1}{2}*\frac{155}{9} = \frac{155}{18}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{155}{18} - u) (\frac{155}{18} + u) = -\frac{500}{9}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{500}{9}
\frac{24025}{324} - u^2 = -\frac{500}{9}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{500}{9}-\frac{24025}{324} = -\frac{42025}{324}
Simplify the expression by subtracting \frac{24025}{324} on both sides
u^2 = \frac{42025}{324} u = \pm\sqrt{\frac{42025}{324}} = \pm \frac{205}{18}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{155}{18} - \frac{205}{18} = -2.778 s = \frac{155}{18} + \frac{205}{18} = 20
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}