Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

factor(9x^{2}-15x+1)
Subtract 3 from 4 to get 1.
9x^{2}-15x+1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 9}}{2\times 9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 9}}{2\times 9}
Square -15.
x=\frac{-\left(-15\right)±\sqrt{225-36}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-15\right)±\sqrt{189}}{2\times 9}
Add 225 to -36.
x=\frac{-\left(-15\right)±3\sqrt{21}}{2\times 9}
Take the square root of 189.
x=\frac{15±3\sqrt{21}}{2\times 9}
The opposite of -15 is 15.
x=\frac{15±3\sqrt{21}}{18}
Multiply 2 times 9.
x=\frac{3\sqrt{21}+15}{18}
Now solve the equation x=\frac{15±3\sqrt{21}}{18} when ± is plus. Add 15 to 3\sqrt{21}.
x=\frac{\sqrt{21}+5}{6}
Divide 15+3\sqrt{21} by 18.
x=\frac{15-3\sqrt{21}}{18}
Now solve the equation x=\frac{15±3\sqrt{21}}{18} when ± is minus. Subtract 3\sqrt{21} from 15.
x=\frac{5-\sqrt{21}}{6}
Divide 15-3\sqrt{21} by 18.
9x^{2}-15x+1=9\left(x-\frac{\sqrt{21}+5}{6}\right)\left(x-\frac{5-\sqrt{21}}{6}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5+\sqrt{21}}{6} for x_{1} and \frac{5-\sqrt{21}}{6} for x_{2}.
9x^{2}-15x+1
Subtract 3 from 4 to get 1.