Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-15 ab=9\times 4=36
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 9x^{2}+ax+bx+4. To find a and b, set up a system to be solved.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 36.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
Calculate the sum for each pair.
a=-12 b=-3
The solution is the pair that gives sum -15.
\left(9x^{2}-12x\right)+\left(-3x+4\right)
Rewrite 9x^{2}-15x+4 as \left(9x^{2}-12x\right)+\left(-3x+4\right).
3x\left(3x-4\right)-\left(3x-4\right)
Factor out 3x in the first and -1 in the second group.
\left(3x-4\right)\left(3x-1\right)
Factor out common term 3x-4 by using distributive property.
x=\frac{4}{3} x=\frac{1}{3}
To find equation solutions, solve 3x-4=0 and 3x-1=0.
9x^{2}-15x+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 9\times 4}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -15 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 9\times 4}}{2\times 9}
Square -15.
x=\frac{-\left(-15\right)±\sqrt{225-36\times 4}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-15\right)±\sqrt{225-144}}{2\times 9}
Multiply -36 times 4.
x=\frac{-\left(-15\right)±\sqrt{81}}{2\times 9}
Add 225 to -144.
x=\frac{-\left(-15\right)±9}{2\times 9}
Take the square root of 81.
x=\frac{15±9}{2\times 9}
The opposite of -15 is 15.
x=\frac{15±9}{18}
Multiply 2 times 9.
x=\frac{24}{18}
Now solve the equation x=\frac{15±9}{18} when ± is plus. Add 15 to 9.
x=\frac{4}{3}
Reduce the fraction \frac{24}{18} to lowest terms by extracting and canceling out 6.
x=\frac{6}{18}
Now solve the equation x=\frac{15±9}{18} when ± is minus. Subtract 9 from 15.
x=\frac{1}{3}
Reduce the fraction \frac{6}{18} to lowest terms by extracting and canceling out 6.
x=\frac{4}{3} x=\frac{1}{3}
The equation is now solved.
9x^{2}-15x+4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
9x^{2}-15x+4-4=-4
Subtract 4 from both sides of the equation.
9x^{2}-15x=-4
Subtracting 4 from itself leaves 0.
\frac{9x^{2}-15x}{9}=-\frac{4}{9}
Divide both sides by 9.
x^{2}+\left(-\frac{15}{9}\right)x=-\frac{4}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-\frac{5}{3}x=-\frac{4}{9}
Reduce the fraction \frac{-15}{9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{5}{3}x+\left(-\frac{5}{6}\right)^{2}=-\frac{4}{9}+\left(-\frac{5}{6}\right)^{2}
Divide -\frac{5}{3}, the coefficient of the x term, by 2 to get -\frac{5}{6}. Then add the square of -\frac{5}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{3}x+\frac{25}{36}=-\frac{4}{9}+\frac{25}{36}
Square -\frac{5}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{3}x+\frac{25}{36}=\frac{1}{4}
Add -\frac{4}{9} to \frac{25}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{6}\right)^{2}=\frac{1}{4}
Factor x^{2}-\frac{5}{3}x+\frac{25}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{6}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{6}=\frac{1}{2} x-\frac{5}{6}=-\frac{1}{2}
Simplify.
x=\frac{4}{3} x=\frac{1}{3}
Add \frac{5}{6} to both sides of the equation.
x ^ 2 -\frac{5}{3}x +\frac{4}{9} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 9
r + s = \frac{5}{3} rs = \frac{4}{9}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{5}{6} - u s = \frac{5}{6} + u
Two numbers r and s sum up to \frac{5}{3} exactly when the average of the two numbers is \frac{1}{2}*\frac{5}{3} = \frac{5}{6}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{5}{6} - u) (\frac{5}{6} + u) = \frac{4}{9}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{4}{9}
\frac{25}{36} - u^2 = \frac{4}{9}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{4}{9}-\frac{25}{36} = -\frac{1}{4}
Simplify the expression by subtracting \frac{25}{36} on both sides
u^2 = \frac{1}{4} u = \pm\sqrt{\frac{1}{4}} = \pm \frac{1}{2}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{5}{6} - \frac{1}{2} = 0.333 s = \frac{5}{6} + \frac{1}{2} = 1.333
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.