Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}-1=6x^{2}-13x-5
Use the distributive property to multiply 2x-5 by 3x+1 and combine like terms.
9x^{2}-1-6x^{2}=-13x-5
Subtract 6x^{2} from both sides.
3x^{2}-1=-13x-5
Combine 9x^{2} and -6x^{2} to get 3x^{2}.
3x^{2}-1+13x=-5
Add 13x to both sides.
3x^{2}-1+13x+5=0
Add 5 to both sides.
3x^{2}+4+13x=0
Add -1 and 5 to get 4.
3x^{2}+13x+4=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=13 ab=3\times 4=12
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx+4. To find a and b, set up a system to be solved.
1,12 2,6 3,4
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 12.
1+12=13 2+6=8 3+4=7
Calculate the sum for each pair.
a=1 b=12
The solution is the pair that gives sum 13.
\left(3x^{2}+x\right)+\left(12x+4\right)
Rewrite 3x^{2}+13x+4 as \left(3x^{2}+x\right)+\left(12x+4\right).
x\left(3x+1\right)+4\left(3x+1\right)
Factor out x in the first and 4 in the second group.
\left(3x+1\right)\left(x+4\right)
Factor out common term 3x+1 by using distributive property.
x=-\frac{1}{3} x=-4
To find equation solutions, solve 3x+1=0 and x+4=0.
9x^{2}-1=6x^{2}-13x-5
Use the distributive property to multiply 2x-5 by 3x+1 and combine like terms.
9x^{2}-1-6x^{2}=-13x-5
Subtract 6x^{2} from both sides.
3x^{2}-1=-13x-5
Combine 9x^{2} and -6x^{2} to get 3x^{2}.
3x^{2}-1+13x=-5
Add 13x to both sides.
3x^{2}-1+13x+5=0
Add 5 to both sides.
3x^{2}+4+13x=0
Add -1 and 5 to get 4.
3x^{2}+13x+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-13±\sqrt{13^{2}-4\times 3\times 4}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 13 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-13±\sqrt{169-4\times 3\times 4}}{2\times 3}
Square 13.
x=\frac{-13±\sqrt{169-12\times 4}}{2\times 3}
Multiply -4 times 3.
x=\frac{-13±\sqrt{169-48}}{2\times 3}
Multiply -12 times 4.
x=\frac{-13±\sqrt{121}}{2\times 3}
Add 169 to -48.
x=\frac{-13±11}{2\times 3}
Take the square root of 121.
x=\frac{-13±11}{6}
Multiply 2 times 3.
x=-\frac{2}{6}
Now solve the equation x=\frac{-13±11}{6} when ± is plus. Add -13 to 11.
x=-\frac{1}{3}
Reduce the fraction \frac{-2}{6} to lowest terms by extracting and canceling out 2.
x=-\frac{24}{6}
Now solve the equation x=\frac{-13±11}{6} when ± is minus. Subtract 11 from -13.
x=-4
Divide -24 by 6.
x=-\frac{1}{3} x=-4
The equation is now solved.
9x^{2}-1=6x^{2}-13x-5
Use the distributive property to multiply 2x-5 by 3x+1 and combine like terms.
9x^{2}-1-6x^{2}=-13x-5
Subtract 6x^{2} from both sides.
3x^{2}-1=-13x-5
Combine 9x^{2} and -6x^{2} to get 3x^{2}.
3x^{2}-1+13x=-5
Add 13x to both sides.
3x^{2}+13x=-5+1
Add 1 to both sides.
3x^{2}+13x=-4
Add -5 and 1 to get -4.
\frac{3x^{2}+13x}{3}=-\frac{4}{3}
Divide both sides by 3.
x^{2}+\frac{13}{3}x=-\frac{4}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{13}{3}x+\left(\frac{13}{6}\right)^{2}=-\frac{4}{3}+\left(\frac{13}{6}\right)^{2}
Divide \frac{13}{3}, the coefficient of the x term, by 2 to get \frac{13}{6}. Then add the square of \frac{13}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{13}{3}x+\frac{169}{36}=-\frac{4}{3}+\frac{169}{36}
Square \frac{13}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{13}{3}x+\frac{169}{36}=\frac{121}{36}
Add -\frac{4}{3} to \frac{169}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{13}{6}\right)^{2}=\frac{121}{36}
Factor x^{2}+\frac{13}{3}x+\frac{169}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{13}{6}\right)^{2}}=\sqrt{\frac{121}{36}}
Take the square root of both sides of the equation.
x+\frac{13}{6}=\frac{11}{6} x+\frac{13}{6}=-\frac{11}{6}
Simplify.
x=-\frac{1}{3} x=-4
Subtract \frac{13}{6} from both sides of the equation.