Solve for x
x=\frac{\sqrt{13}}{6}-\frac{1}{2}\approx 0.100925213
x=-\frac{\sqrt{13}}{6}-\frac{1}{2}\approx -1.100925213
Graph
Share
Copied to clipboard
9x^{2}+9x=1
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
9x^{2}+9x-1=1-1
Subtract 1 from both sides of the equation.
9x^{2}+9x-1=0
Subtracting 1 from itself leaves 0.
x=\frac{-9±\sqrt{9^{2}-4\times 9\left(-1\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 9 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\times 9\left(-1\right)}}{2\times 9}
Square 9.
x=\frac{-9±\sqrt{81-36\left(-1\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-9±\sqrt{81+36}}{2\times 9}
Multiply -36 times -1.
x=\frac{-9±\sqrt{117}}{2\times 9}
Add 81 to 36.
x=\frac{-9±3\sqrt{13}}{2\times 9}
Take the square root of 117.
x=\frac{-9±3\sqrt{13}}{18}
Multiply 2 times 9.
x=\frac{3\sqrt{13}-9}{18}
Now solve the equation x=\frac{-9±3\sqrt{13}}{18} when ± is plus. Add -9 to 3\sqrt{13}.
x=\frac{\sqrt{13}}{6}-\frac{1}{2}
Divide -9+3\sqrt{13} by 18.
x=\frac{-3\sqrt{13}-9}{18}
Now solve the equation x=\frac{-9±3\sqrt{13}}{18} when ± is minus. Subtract 3\sqrt{13} from -9.
x=-\frac{\sqrt{13}}{6}-\frac{1}{2}
Divide -9-3\sqrt{13} by 18.
x=\frac{\sqrt{13}}{6}-\frac{1}{2} x=-\frac{\sqrt{13}}{6}-\frac{1}{2}
The equation is now solved.
9x^{2}+9x=1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{9x^{2}+9x}{9}=\frac{1}{9}
Divide both sides by 9.
x^{2}+\frac{9}{9}x=\frac{1}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}+x=\frac{1}{9}
Divide 9 by 9.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{1}{9}+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=\frac{1}{9}+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=\frac{13}{36}
Add \frac{1}{9} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{2}\right)^{2}=\frac{13}{36}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{13}{36}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{\sqrt{13}}{6} x+\frac{1}{2}=-\frac{\sqrt{13}}{6}
Simplify.
x=\frac{\sqrt{13}}{6}-\frac{1}{2} x=-\frac{\sqrt{13}}{6}-\frac{1}{2}
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}