Solve for x (complex solution)
x=\frac{\sqrt{2}i}{3}+3\approx 3+0.471404521i
x=-\frac{\sqrt{2}i}{3}+3\approx 3-0.471404521i
Graph
Share
Copied to clipboard
9x^{2}+83-54x=0
Subtract 54x from both sides.
9x^{2}-54x+83=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-54\right)±\sqrt{\left(-54\right)^{2}-4\times 9\times 83}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -54 for b, and 83 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-54\right)±\sqrt{2916-4\times 9\times 83}}{2\times 9}
Square -54.
x=\frac{-\left(-54\right)±\sqrt{2916-36\times 83}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-54\right)±\sqrt{2916-2988}}{2\times 9}
Multiply -36 times 83.
x=\frac{-\left(-54\right)±\sqrt{-72}}{2\times 9}
Add 2916 to -2988.
x=\frac{-\left(-54\right)±6\sqrt{2}i}{2\times 9}
Take the square root of -72.
x=\frac{54±6\sqrt{2}i}{2\times 9}
The opposite of -54 is 54.
x=\frac{54±6\sqrt{2}i}{18}
Multiply 2 times 9.
x=\frac{54+6\sqrt{2}i}{18}
Now solve the equation x=\frac{54±6\sqrt{2}i}{18} when ± is plus. Add 54 to 6i\sqrt{2}.
x=\frac{\sqrt{2}i}{3}+3
Divide 54+6i\sqrt{2} by 18.
x=\frac{-6\sqrt{2}i+54}{18}
Now solve the equation x=\frac{54±6\sqrt{2}i}{18} when ± is minus. Subtract 6i\sqrt{2} from 54.
x=-\frac{\sqrt{2}i}{3}+3
Divide 54-6i\sqrt{2} by 18.
x=\frac{\sqrt{2}i}{3}+3 x=-\frac{\sqrt{2}i}{3}+3
The equation is now solved.
9x^{2}+83-54x=0
Subtract 54x from both sides.
9x^{2}-54x=-83
Subtract 83 from both sides. Anything subtracted from zero gives its negation.
\frac{9x^{2}-54x}{9}=-\frac{83}{9}
Divide both sides by 9.
x^{2}+\left(-\frac{54}{9}\right)x=-\frac{83}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-6x=-\frac{83}{9}
Divide -54 by 9.
x^{2}-6x+\left(-3\right)^{2}=-\frac{83}{9}+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=-\frac{83}{9}+9
Square -3.
x^{2}-6x+9=-\frac{2}{9}
Add -\frac{83}{9} to 9.
\left(x-3\right)^{2}=-\frac{2}{9}
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{-\frac{2}{9}}
Take the square root of both sides of the equation.
x-3=\frac{\sqrt{2}i}{3} x-3=-\frac{\sqrt{2}i}{3}
Simplify.
x=\frac{\sqrt{2}i}{3}+3 x=-\frac{\sqrt{2}i}{3}+3
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}