Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}=2-7
Subtract 7 from both sides.
9x^{2}=-5
Subtract 7 from 2 to get -5.
x^{2}=-\frac{5}{9}
Divide both sides by 9.
x=\frac{\sqrt{5}i}{3} x=-\frac{\sqrt{5}i}{3}
The equation is now solved.
9x^{2}+7-2=0
Subtract 2 from both sides.
9x^{2}+5=0
Subtract 2 from 7 to get 5.
x=\frac{0±\sqrt{0^{2}-4\times 9\times 5}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 0 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 9\times 5}}{2\times 9}
Square 0.
x=\frac{0±\sqrt{-36\times 5}}{2\times 9}
Multiply -4 times 9.
x=\frac{0±\sqrt{-180}}{2\times 9}
Multiply -36 times 5.
x=\frac{0±6\sqrt{5}i}{2\times 9}
Take the square root of -180.
x=\frac{0±6\sqrt{5}i}{18}
Multiply 2 times 9.
x=\frac{\sqrt{5}i}{3}
Now solve the equation x=\frac{0±6\sqrt{5}i}{18} when ± is plus.
x=-\frac{\sqrt{5}i}{3}
Now solve the equation x=\frac{0±6\sqrt{5}i}{18} when ± is minus.
x=\frac{\sqrt{5}i}{3} x=-\frac{\sqrt{5}i}{3}
The equation is now solved.