Solve for c
c=-\frac{9x^{2}}{6x+5}
x\neq -\frac{5}{6}
Solve for x (complex solution)
x=\frac{\sqrt{c\left(c-5\right)}-c}{3}
x=\frac{-\sqrt{c\left(c-5\right)}-c}{3}
Solve for x
x=\frac{\sqrt{c\left(c-5\right)}-c}{3}
x=\frac{-\sqrt{c\left(c-5\right)}-c}{3}\text{, }c\geq 5\text{ or }c\leq 0
Graph
Share
Copied to clipboard
6cx+5c=-9x^{2}
Subtract 9x^{2} from both sides. Anything subtracted from zero gives its negation.
\left(6x+5\right)c=-9x^{2}
Combine all terms containing c.
\frac{\left(6x+5\right)c}{6x+5}=-\frac{9x^{2}}{6x+5}
Divide both sides by 6x+5.
c=-\frac{9x^{2}}{6x+5}
Dividing by 6x+5 undoes the multiplication by 6x+5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}