Solve for x (complex solution)
x = \frac{\sqrt{6}}{2} \approx 1.224744871
x = -\frac{\sqrt{6}}{2} \approx -1.224744871
x=-\frac{\sqrt{6}i}{3}\approx -0-0.816496581i
x=\frac{\sqrt{6}i}{3}\approx 0.816496581i
Solve for x
x = -\frac{\sqrt{6}}{2} \approx -1.224744871
x = \frac{\sqrt{6}}{2} \approx 1.224744871
Graph
Quiz
Quadratic Equation
5 problems similar to:
9 x ^ { 2 } + 4 = ( 3 x ^ { 2 } - 1 ) ( 2 x ^ { 2 } + 2 )
Share
Copied to clipboard
9x^{2}+4=6x^{4}+4x^{2}-2
Use the distributive property to multiply 3x^{2}-1 by 2x^{2}+2 and combine like terms.
9x^{2}+4-6x^{4}=4x^{2}-2
Subtract 6x^{4} from both sides.
9x^{2}+4-6x^{4}-4x^{2}=-2
Subtract 4x^{2} from both sides.
5x^{2}+4-6x^{4}=-2
Combine 9x^{2} and -4x^{2} to get 5x^{2}.
5x^{2}+4-6x^{4}+2=0
Add 2 to both sides.
5x^{2}+6-6x^{4}=0
Add 4 and 2 to get 6.
-6t^{2}+5t+6=0
Substitute t for x^{2}.
t=\frac{-5±\sqrt{5^{2}-4\left(-6\right)\times 6}}{-6\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -6 for a, 5 for b, and 6 for c in the quadratic formula.
t=\frac{-5±13}{-12}
Do the calculations.
t=-\frac{2}{3} t=\frac{3}{2}
Solve the equation t=\frac{-5±13}{-12} when ± is plus and when ± is minus.
x=-\frac{\sqrt{6}i}{3} x=\frac{\sqrt{6}i}{3} x=-\frac{\sqrt{6}}{2} x=\frac{\sqrt{6}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
9x^{2}+4=6x^{4}+4x^{2}-2
Use the distributive property to multiply 3x^{2}-1 by 2x^{2}+2 and combine like terms.
9x^{2}+4-6x^{4}=4x^{2}-2
Subtract 6x^{4} from both sides.
9x^{2}+4-6x^{4}-4x^{2}=-2
Subtract 4x^{2} from both sides.
5x^{2}+4-6x^{4}=-2
Combine 9x^{2} and -4x^{2} to get 5x^{2}.
5x^{2}+4-6x^{4}+2=0
Add 2 to both sides.
5x^{2}+6-6x^{4}=0
Add 4 and 2 to get 6.
-6t^{2}+5t+6=0
Substitute t for x^{2}.
t=\frac{-5±\sqrt{5^{2}-4\left(-6\right)\times 6}}{-6\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -6 for a, 5 for b, and 6 for c in the quadratic formula.
t=\frac{-5±13}{-12}
Do the calculations.
t=-\frac{2}{3} t=\frac{3}{2}
Solve the equation t=\frac{-5±13}{-12} when ± is plus and when ± is minus.
x=\frac{\sqrt{6}}{2} x=-\frac{\sqrt{6}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}