Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}+4=6x^{4}+4x^{2}-2
Use the distributive property to multiply 3x^{2}-1 by 2x^{2}+2 and combine like terms.
9x^{2}+4-6x^{4}=4x^{2}-2
Subtract 6x^{4} from both sides.
9x^{2}+4-6x^{4}-4x^{2}=-2
Subtract 4x^{2} from both sides.
5x^{2}+4-6x^{4}=-2
Combine 9x^{2} and -4x^{2} to get 5x^{2}.
5x^{2}+4-6x^{4}+2=0
Add 2 to both sides.
5x^{2}+6-6x^{4}=0
Add 4 and 2 to get 6.
-6t^{2}+5t+6=0
Substitute t for x^{2}.
t=\frac{-5±\sqrt{5^{2}-4\left(-6\right)\times 6}}{-6\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -6 for a, 5 for b, and 6 for c in the quadratic formula.
t=\frac{-5±13}{-12}
Do the calculations.
t=-\frac{2}{3} t=\frac{3}{2}
Solve the equation t=\frac{-5±13}{-12} when ± is plus and when ± is minus.
x=-\frac{\sqrt{6}i}{3} x=\frac{\sqrt{6}i}{3} x=-\frac{\sqrt{6}}{2} x=\frac{\sqrt{6}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
9x^{2}+4=6x^{4}+4x^{2}-2
Use the distributive property to multiply 3x^{2}-1 by 2x^{2}+2 and combine like terms.
9x^{2}+4-6x^{4}=4x^{2}-2
Subtract 6x^{4} from both sides.
9x^{2}+4-6x^{4}-4x^{2}=-2
Subtract 4x^{2} from both sides.
5x^{2}+4-6x^{4}=-2
Combine 9x^{2} and -4x^{2} to get 5x^{2}.
5x^{2}+4-6x^{4}+2=0
Add 2 to both sides.
5x^{2}+6-6x^{4}=0
Add 4 and 2 to get 6.
-6t^{2}+5t+6=0
Substitute t for x^{2}.
t=\frac{-5±\sqrt{5^{2}-4\left(-6\right)\times 6}}{-6\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -6 for a, 5 for b, and 6 for c in the quadratic formula.
t=\frac{-5±13}{-12}
Do the calculations.
t=-\frac{2}{3} t=\frac{3}{2}
Solve the equation t=\frac{-5±13}{-12} when ± is plus and when ± is minus.
x=\frac{\sqrt{6}}{2} x=-\frac{\sqrt{6}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.