Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}+2x+7=70
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
9x^{2}+2x+7-70=70-70
Subtract 70 from both sides of the equation.
9x^{2}+2x+7-70=0
Subtracting 70 from itself leaves 0.
9x^{2}+2x-63=0
Subtract 70 from 7.
x=\frac{-2±\sqrt{2^{2}-4\times 9\left(-63\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 2 for b, and -63 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 9\left(-63\right)}}{2\times 9}
Square 2.
x=\frac{-2±\sqrt{4-36\left(-63\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-2±\sqrt{4+2268}}{2\times 9}
Multiply -36 times -63.
x=\frac{-2±\sqrt{2272}}{2\times 9}
Add 4 to 2268.
x=\frac{-2±4\sqrt{142}}{2\times 9}
Take the square root of 2272.
x=\frac{-2±4\sqrt{142}}{18}
Multiply 2 times 9.
x=\frac{4\sqrt{142}-2}{18}
Now solve the equation x=\frac{-2±4\sqrt{142}}{18} when ± is plus. Add -2 to 4\sqrt{142}.
x=\frac{2\sqrt{142}-1}{9}
Divide -2+4\sqrt{142} by 18.
x=\frac{-4\sqrt{142}-2}{18}
Now solve the equation x=\frac{-2±4\sqrt{142}}{18} when ± is minus. Subtract 4\sqrt{142} from -2.
x=\frac{-2\sqrt{142}-1}{9}
Divide -2-4\sqrt{142} by 18.
x=\frac{2\sqrt{142}-1}{9} x=\frac{-2\sqrt{142}-1}{9}
The equation is now solved.
9x^{2}+2x+7=70
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
9x^{2}+2x+7-7=70-7
Subtract 7 from both sides of the equation.
9x^{2}+2x=70-7
Subtracting 7 from itself leaves 0.
9x^{2}+2x=63
Subtract 7 from 70.
\frac{9x^{2}+2x}{9}=\frac{63}{9}
Divide both sides by 9.
x^{2}+\frac{2}{9}x=\frac{63}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}+\frac{2}{9}x=7
Divide 63 by 9.
x^{2}+\frac{2}{9}x+\left(\frac{1}{9}\right)^{2}=7+\left(\frac{1}{9}\right)^{2}
Divide \frac{2}{9}, the coefficient of the x term, by 2 to get \frac{1}{9}. Then add the square of \frac{1}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{9}x+\frac{1}{81}=7+\frac{1}{81}
Square \frac{1}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{9}x+\frac{1}{81}=\frac{568}{81}
Add 7 to \frac{1}{81}.
\left(x+\frac{1}{9}\right)^{2}=\frac{568}{81}
Factor x^{2}+\frac{2}{9}x+\frac{1}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{9}\right)^{2}}=\sqrt{\frac{568}{81}}
Take the square root of both sides of the equation.
x+\frac{1}{9}=\frac{2\sqrt{142}}{9} x+\frac{1}{9}=-\frac{2\sqrt{142}}{9}
Simplify.
x=\frac{2\sqrt{142}-1}{9} x=\frac{-2\sqrt{142}-1}{9}
Subtract \frac{1}{9} from both sides of the equation.