Solve for x
x=\frac{\sqrt{3}}{3}-1\approx -0.422649731
x=-\frac{\sqrt{3}}{3}-1\approx -1.577350269
Graph
Share
Copied to clipboard
9x^{2}+18x+9=3
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
9x^{2}+18x+9-3=3-3
Subtract 3 from both sides of the equation.
9x^{2}+18x+9-3=0
Subtracting 3 from itself leaves 0.
9x^{2}+18x+6=0
Subtract 3 from 9.
x=\frac{-18±\sqrt{18^{2}-4\times 9\times 6}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 18 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\times 9\times 6}}{2\times 9}
Square 18.
x=\frac{-18±\sqrt{324-36\times 6}}{2\times 9}
Multiply -4 times 9.
x=\frac{-18±\sqrt{324-216}}{2\times 9}
Multiply -36 times 6.
x=\frac{-18±\sqrt{108}}{2\times 9}
Add 324 to -216.
x=\frac{-18±6\sqrt{3}}{2\times 9}
Take the square root of 108.
x=\frac{-18±6\sqrt{3}}{18}
Multiply 2 times 9.
x=\frac{6\sqrt{3}-18}{18}
Now solve the equation x=\frac{-18±6\sqrt{3}}{18} when ± is plus. Add -18 to 6\sqrt{3}.
x=\frac{\sqrt{3}}{3}-1
Divide -18+6\sqrt{3} by 18.
x=\frac{-6\sqrt{3}-18}{18}
Now solve the equation x=\frac{-18±6\sqrt{3}}{18} when ± is minus. Subtract 6\sqrt{3} from -18.
x=-\frac{\sqrt{3}}{3}-1
Divide -18-6\sqrt{3} by 18.
x=\frac{\sqrt{3}}{3}-1 x=-\frac{\sqrt{3}}{3}-1
The equation is now solved.
9x^{2}+18x+9=3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
9x^{2}+18x+9-9=3-9
Subtract 9 from both sides of the equation.
9x^{2}+18x=3-9
Subtracting 9 from itself leaves 0.
9x^{2}+18x=-6
Subtract 9 from 3.
\frac{9x^{2}+18x}{9}=-\frac{6}{9}
Divide both sides by 9.
x^{2}+\frac{18}{9}x=-\frac{6}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}+2x=-\frac{6}{9}
Divide 18 by 9.
x^{2}+2x=-\frac{2}{3}
Reduce the fraction \frac{-6}{9} to lowest terms by extracting and canceling out 3.
x^{2}+2x+1^{2}=-\frac{2}{3}+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=-\frac{2}{3}+1
Square 1.
x^{2}+2x+1=\frac{1}{3}
Add -\frac{2}{3} to 1.
\left(x+1\right)^{2}=\frac{1}{3}
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{1}{3}}
Take the square root of both sides of the equation.
x+1=\frac{\sqrt{3}}{3} x+1=-\frac{\sqrt{3}}{3}
Simplify.
x=\frac{\sqrt{3}}{3}-1 x=-\frac{\sqrt{3}}{3}-1
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}