Solve for v
v=\frac{3\left(x-2\right)^{2}}{32}+\frac{y^{2}}{6}
Solve for x (complex solution)
x=\frac{4\sqrt{6v-y^{2}}}{3}+2
x=-\frac{4\sqrt{6v-y^{2}}}{3}+2
Solve for x
x=\frac{4\sqrt{6v-y^{2}}}{3}+2
x=-\frac{4\sqrt{6v-y^{2}}}{3}+2\text{, }v\geq \frac{y^{2}}{6}
Graph
Share
Copied to clipboard
16y^{2}-36x-96v+36=-9x^{2}
Subtract 9x^{2} from both sides. Anything subtracted from zero gives its negation.
-36x-96v+36=-9x^{2}-16y^{2}
Subtract 16y^{2} from both sides.
-96v+36=-9x^{2}-16y^{2}+36x
Add 36x to both sides.
-96v=-9x^{2}-16y^{2}+36x-36
Subtract 36 from both sides.
-96v=-9x^{2}+36x-16y^{2}-36
The equation is in standard form.
\frac{-96v}{-96}=\frac{-9\left(x-2\right)^{2}-16y^{2}}{-96}
Divide both sides by -96.
v=\frac{-9\left(x-2\right)^{2}-16y^{2}}{-96}
Dividing by -96 undoes the multiplication by -96.
v=\frac{3\left(x-2\right)^{2}}{32}+\frac{y^{2}}{6}
Divide -16y^{2}-9\left(-2+x\right)^{2} by -96.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}