Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

9x^{2}=-25-10
Subtract 10 from both sides.
9x^{2}=-35
Subtract 10 from -25 to get -35.
x^{2}=-\frac{35}{9}
Divide both sides by 9.
x=\frac{\sqrt{35}i}{3} x=-\frac{\sqrt{35}i}{3}
The equation is now solved.
9x^{2}+10+25=0
Add 25 to both sides.
9x^{2}+35=0
Add 10 and 25 to get 35.
x=\frac{0±\sqrt{0^{2}-4\times 9\times 35}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 0 for b, and 35 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 9\times 35}}{2\times 9}
Square 0.
x=\frac{0±\sqrt{-36\times 35}}{2\times 9}
Multiply -4 times 9.
x=\frac{0±\sqrt{-1260}}{2\times 9}
Multiply -36 times 35.
x=\frac{0±6\sqrt{35}i}{2\times 9}
Take the square root of -1260.
x=\frac{0±6\sqrt{35}i}{18}
Multiply 2 times 9.
x=\frac{\sqrt{35}i}{3}
Now solve the equation x=\frac{0±6\sqrt{35}i}{18} when ± is plus.
x=-\frac{\sqrt{35}i}{3}
Now solve the equation x=\frac{0±6\sqrt{35}i}{18} when ± is minus.
x=\frac{\sqrt{35}i}{3} x=-\frac{\sqrt{35}i}{3}
The equation is now solved.