Solve for b
b = -\frac{15}{13} = -1\frac{2}{13} = -1.1538461538461537
Solve for x
x = \frac{15}{13} = 1\frac{2}{13} = 1.1538461538461537
Graph
Share
Copied to clipboard
10x+15=23x-13b
Combine 9x and x to get 10x.
23x-13b=10x+15
Swap sides so that all variable terms are on the left hand side.
-13b=10x+15-23x
Subtract 23x from both sides.
-13b=-13x+15
Combine 10x and -23x to get -13x.
-13b=15-13x
The equation is in standard form.
\frac{-13b}{-13}=\frac{15-13x}{-13}
Divide both sides by -13.
b=\frac{15-13x}{-13}
Dividing by -13 undoes the multiplication by -13.
b=x-\frac{15}{13}
Divide -13x+15 by -13.
10x+15=23x-13b
Combine 9x and x to get 10x.
10x+15-23x=-13b
Subtract 23x from both sides.
-13x+15=-13b
Combine 10x and -23x to get -13x.
-13x=-13b-15
Subtract 15 from both sides.
\frac{-13x}{-13}=\frac{-13b-15}{-13}
Divide both sides by -13.
x=\frac{-13b-15}{-13}
Dividing by -13 undoes the multiplication by -13.
x=b+\frac{15}{13}
Divide -13b-15 by -13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}