Factor
3\left(w-1\right)\left(3w+7\right)w^{3}
Evaluate
3\left(w-1\right)\left(3w+7\right)w^{3}
Share
Copied to clipboard
3\left(3w^{5}+4w^{4}-7w^{3}\right)
Factor out 3.
w^{3}\left(3w^{2}+4w-7\right)
Consider 3w^{5}+4w^{4}-7w^{3}. Factor out w^{3}.
a+b=4 ab=3\left(-7\right)=-21
Consider 3w^{2}+4w-7. Factor the expression by grouping. First, the expression needs to be rewritten as 3w^{2}+aw+bw-7. To find a and b, set up a system to be solved.
-1,21 -3,7
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -21.
-1+21=20 -3+7=4
Calculate the sum for each pair.
a=-3 b=7
The solution is the pair that gives sum 4.
\left(3w^{2}-3w\right)+\left(7w-7\right)
Rewrite 3w^{2}+4w-7 as \left(3w^{2}-3w\right)+\left(7w-7\right).
3w\left(w-1\right)+7\left(w-1\right)
Factor out 3w in the first and 7 in the second group.
\left(w-1\right)\left(3w+7\right)
Factor out common term w-1 by using distributive property.
3w^{3}\left(w-1\right)\left(3w+7\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}