Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

9\left(w^{4}-z^{4}\right)
Factor out 9.
\left(w^{2}-z^{2}\right)\left(w^{2}+z^{2}\right)
Consider w^{4}-z^{4}. Rewrite w^{4}-z^{4} as \left(w^{2}\right)^{2}-\left(z^{2}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(-z^{2}+w^{2}\right)\left(z^{2}+w^{2}\right)
Reorder the terms.
\left(w-z\right)\left(w+z\right)
Consider -z^{2}+w^{2}. Rewrite -z^{2}+w^{2} as w^{2}-z^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(-z+w\right)\left(z+w\right)
Reorder the terms.
9\left(-z+w\right)\left(z+w\right)\left(z^{2}+w^{2}\right)
Rewrite the complete factored expression.