Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

9\left(v^{2}+9v\right)
Factor out 9.
v\left(v+9\right)
Consider v^{2}+9v. Factor out v.
9v\left(v+9\right)
Rewrite the complete factored expression.
9v^{2}+81v=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
v=\frac{-81±\sqrt{81^{2}}}{2\times 9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
v=\frac{-81±81}{2\times 9}
Take the square root of 81^{2}.
v=\frac{-81±81}{18}
Multiply 2 times 9.
v=\frac{0}{18}
Now solve the equation v=\frac{-81±81}{18} when ± is plus. Add -81 to 81.
v=0
Divide 0 by 18.
v=-\frac{162}{18}
Now solve the equation v=\frac{-81±81}{18} when ± is minus. Subtract 81 from -81.
v=-9
Divide -162 by 18.
9v^{2}+81v=9v\left(v-\left(-9\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -9 for x_{2}.
9v^{2}+81v=9v\left(v+9\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.