Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

9t^{2}-19t-24=0
Subtract 24 from both sides.
a+b=-19 ab=9\left(-24\right)=-216
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 9t^{2}+at+bt-24. To find a and b, set up a system to be solved.
1,-216 2,-108 3,-72 4,-54 6,-36 8,-27 9,-24 12,-18
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -216.
1-216=-215 2-108=-106 3-72=-69 4-54=-50 6-36=-30 8-27=-19 9-24=-15 12-18=-6
Calculate the sum for each pair.
a=-27 b=8
The solution is the pair that gives sum -19.
\left(9t^{2}-27t\right)+\left(8t-24\right)
Rewrite 9t^{2}-19t-24 as \left(9t^{2}-27t\right)+\left(8t-24\right).
9t\left(t-3\right)+8\left(t-3\right)
Factor out 9t in the first and 8 in the second group.
\left(t-3\right)\left(9t+8\right)
Factor out common term t-3 by using distributive property.
t=3 t=-\frac{8}{9}
To find equation solutions, solve t-3=0 and 9t+8=0.
9t^{2}-19t=24
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
9t^{2}-19t-24=24-24
Subtract 24 from both sides of the equation.
9t^{2}-19t-24=0
Subtracting 24 from itself leaves 0.
t=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\times 9\left(-24\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -19 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-19\right)±\sqrt{361-4\times 9\left(-24\right)}}{2\times 9}
Square -19.
t=\frac{-\left(-19\right)±\sqrt{361-36\left(-24\right)}}{2\times 9}
Multiply -4 times 9.
t=\frac{-\left(-19\right)±\sqrt{361+864}}{2\times 9}
Multiply -36 times -24.
t=\frac{-\left(-19\right)±\sqrt{1225}}{2\times 9}
Add 361 to 864.
t=\frac{-\left(-19\right)±35}{2\times 9}
Take the square root of 1225.
t=\frac{19±35}{2\times 9}
The opposite of -19 is 19.
t=\frac{19±35}{18}
Multiply 2 times 9.
t=\frac{54}{18}
Now solve the equation t=\frac{19±35}{18} when ± is plus. Add 19 to 35.
t=3
Divide 54 by 18.
t=-\frac{16}{18}
Now solve the equation t=\frac{19±35}{18} when ± is minus. Subtract 35 from 19.
t=-\frac{8}{9}
Reduce the fraction \frac{-16}{18} to lowest terms by extracting and canceling out 2.
t=3 t=-\frac{8}{9}
The equation is now solved.
9t^{2}-19t=24
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{9t^{2}-19t}{9}=\frac{24}{9}
Divide both sides by 9.
t^{2}-\frac{19}{9}t=\frac{24}{9}
Dividing by 9 undoes the multiplication by 9.
t^{2}-\frac{19}{9}t=\frac{8}{3}
Reduce the fraction \frac{24}{9} to lowest terms by extracting and canceling out 3.
t^{2}-\frac{19}{9}t+\left(-\frac{19}{18}\right)^{2}=\frac{8}{3}+\left(-\frac{19}{18}\right)^{2}
Divide -\frac{19}{9}, the coefficient of the x term, by 2 to get -\frac{19}{18}. Then add the square of -\frac{19}{18} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{19}{9}t+\frac{361}{324}=\frac{8}{3}+\frac{361}{324}
Square -\frac{19}{18} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{19}{9}t+\frac{361}{324}=\frac{1225}{324}
Add \frac{8}{3} to \frac{361}{324} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{19}{18}\right)^{2}=\frac{1225}{324}
Factor t^{2}-\frac{19}{9}t+\frac{361}{324}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{19}{18}\right)^{2}}=\sqrt{\frac{1225}{324}}
Take the square root of both sides of the equation.
t-\frac{19}{18}=\frac{35}{18} t-\frac{19}{18}=-\frac{35}{18}
Simplify.
t=3 t=-\frac{8}{9}
Add \frac{19}{18} to both sides of the equation.