Solve for t
t=-\frac{1}{3}\approx -0.333333333
Share
Copied to clipboard
a+b=6 ab=9\times 1=9
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 9t^{2}+at+bt+1. To find a and b, set up a system to be solved.
1,9 3,3
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 9.
1+9=10 3+3=6
Calculate the sum for each pair.
a=3 b=3
The solution is the pair that gives sum 6.
\left(9t^{2}+3t\right)+\left(3t+1\right)
Rewrite 9t^{2}+6t+1 as \left(9t^{2}+3t\right)+\left(3t+1\right).
3t\left(3t+1\right)+3t+1
Factor out 3t in 9t^{2}+3t.
\left(3t+1\right)\left(3t+1\right)
Factor out common term 3t+1 by using distributive property.
\left(3t+1\right)^{2}
Rewrite as a binomial square.
t=-\frac{1}{3}
To find equation solution, solve 3t+1=0.
9t^{2}+6t+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-6±\sqrt{6^{2}-4\times 9}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 6 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-6±\sqrt{36-4\times 9}}{2\times 9}
Square 6.
t=\frac{-6±\sqrt{36-36}}{2\times 9}
Multiply -4 times 9.
t=\frac{-6±\sqrt{0}}{2\times 9}
Add 36 to -36.
t=-\frac{6}{2\times 9}
Take the square root of 0.
t=-\frac{6}{18}
Multiply 2 times 9.
t=-\frac{1}{3}
Reduce the fraction \frac{-6}{18} to lowest terms by extracting and canceling out 6.
9t^{2}+6t+1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
9t^{2}+6t+1-1=-1
Subtract 1 from both sides of the equation.
9t^{2}+6t=-1
Subtracting 1 from itself leaves 0.
\frac{9t^{2}+6t}{9}=-\frac{1}{9}
Divide both sides by 9.
t^{2}+\frac{6}{9}t=-\frac{1}{9}
Dividing by 9 undoes the multiplication by 9.
t^{2}+\frac{2}{3}t=-\frac{1}{9}
Reduce the fraction \frac{6}{9} to lowest terms by extracting and canceling out 3.
t^{2}+\frac{2}{3}t+\left(\frac{1}{3}\right)^{2}=-\frac{1}{9}+\left(\frac{1}{3}\right)^{2}
Divide \frac{2}{3}, the coefficient of the x term, by 2 to get \frac{1}{3}. Then add the square of \frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+\frac{2}{3}t+\frac{1}{9}=\frac{-1+1}{9}
Square \frac{1}{3} by squaring both the numerator and the denominator of the fraction.
t^{2}+\frac{2}{3}t+\frac{1}{9}=0
Add -\frac{1}{9} to \frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t+\frac{1}{3}\right)^{2}=0
Factor t^{2}+\frac{2}{3}t+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{1}{3}\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
t+\frac{1}{3}=0 t+\frac{1}{3}=0
Simplify.
t=-\frac{1}{3} t=-\frac{1}{3}
Subtract \frac{1}{3} from both sides of the equation.
t=-\frac{1}{3}
The equation is now solved. Solutions are the same.
x ^ 2 +\frac{2}{3}x +\frac{1}{9} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 9
r + s = -\frac{2}{3} rs = \frac{1}{9}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{1}{3} - u s = -\frac{1}{3} + u
Two numbers r and s sum up to -\frac{2}{3} exactly when the average of the two numbers is \frac{1}{2}*-\frac{2}{3} = -\frac{1}{3}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{1}{3} - u) (-\frac{1}{3} + u) = \frac{1}{9}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{1}{9}
\frac{1}{9} - u^2 = \frac{1}{9}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{1}{9}-\frac{1}{9} = 0
Simplify the expression by subtracting \frac{1}{9} on both sides
u^2 = 0 u = 0
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r = s = -\frac{1}{3} = -0.333
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}