Skip to main content
Solve for p
Tick mark Image

Similar Problems from Web Search

Share

9p^{2}-7-9p=0
Subtract 9p from both sides.
9p^{2}-9p-7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 9\left(-7\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -9 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-\left(-9\right)±\sqrt{81-4\times 9\left(-7\right)}}{2\times 9}
Square -9.
p=\frac{-\left(-9\right)±\sqrt{81-36\left(-7\right)}}{2\times 9}
Multiply -4 times 9.
p=\frac{-\left(-9\right)±\sqrt{81+252}}{2\times 9}
Multiply -36 times -7.
p=\frac{-\left(-9\right)±\sqrt{333}}{2\times 9}
Add 81 to 252.
p=\frac{-\left(-9\right)±3\sqrt{37}}{2\times 9}
Take the square root of 333.
p=\frac{9±3\sqrt{37}}{2\times 9}
The opposite of -9 is 9.
p=\frac{9±3\sqrt{37}}{18}
Multiply 2 times 9.
p=\frac{3\sqrt{37}+9}{18}
Now solve the equation p=\frac{9±3\sqrt{37}}{18} when ± is plus. Add 9 to 3\sqrt{37}.
p=\frac{\sqrt{37}}{6}+\frac{1}{2}
Divide 9+3\sqrt{37} by 18.
p=\frac{9-3\sqrt{37}}{18}
Now solve the equation p=\frac{9±3\sqrt{37}}{18} when ± is minus. Subtract 3\sqrt{37} from 9.
p=-\frac{\sqrt{37}}{6}+\frac{1}{2}
Divide 9-3\sqrt{37} by 18.
p=\frac{\sqrt{37}}{6}+\frac{1}{2} p=-\frac{\sqrt{37}}{6}+\frac{1}{2}
The equation is now solved.
9p^{2}-7-9p=0
Subtract 9p from both sides.
9p^{2}-9p=7
Add 7 to both sides. Anything plus zero gives itself.
\frac{9p^{2}-9p}{9}=\frac{7}{9}
Divide both sides by 9.
p^{2}+\left(-\frac{9}{9}\right)p=\frac{7}{9}
Dividing by 9 undoes the multiplication by 9.
p^{2}-p=\frac{7}{9}
Divide -9 by 9.
p^{2}-p+\left(-\frac{1}{2}\right)^{2}=\frac{7}{9}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
p^{2}-p+\frac{1}{4}=\frac{7}{9}+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
p^{2}-p+\frac{1}{4}=\frac{37}{36}
Add \frac{7}{9} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(p-\frac{1}{2}\right)^{2}=\frac{37}{36}
Factor p^{2}-p+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p-\frac{1}{2}\right)^{2}}=\sqrt{\frac{37}{36}}
Take the square root of both sides of the equation.
p-\frac{1}{2}=\frac{\sqrt{37}}{6} p-\frac{1}{2}=-\frac{\sqrt{37}}{6}
Simplify.
p=\frac{\sqrt{37}}{6}+\frac{1}{2} p=-\frac{\sqrt{37}}{6}+\frac{1}{2}
Add \frac{1}{2} to both sides of the equation.