Solve for p
p = \frac{7}{3} = 2\frac{1}{3} \approx 2.333333333
p = -\frac{7}{3} = -2\frac{1}{3} \approx -2.333333333
Share
Copied to clipboard
p^{2}=\frac{49}{9}
Divide both sides by 9.
p^{2}-\frac{49}{9}=0
Subtract \frac{49}{9} from both sides.
9p^{2}-49=0
Multiply both sides by 9.
\left(3p-7\right)\left(3p+7\right)=0
Consider 9p^{2}-49. Rewrite 9p^{2}-49 as \left(3p\right)^{2}-7^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
p=\frac{7}{3} p=-\frac{7}{3}
To find equation solutions, solve 3p-7=0 and 3p+7=0.
p^{2}=\frac{49}{9}
Divide both sides by 9.
p=\frac{7}{3} p=-\frac{7}{3}
Take the square root of both sides of the equation.
p^{2}=\frac{49}{9}
Divide both sides by 9.
p^{2}-\frac{49}{9}=0
Subtract \frac{49}{9} from both sides.
p=\frac{0±\sqrt{0^{2}-4\left(-\frac{49}{9}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{49}{9} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{0±\sqrt{-4\left(-\frac{49}{9}\right)}}{2}
Square 0.
p=\frac{0±\sqrt{\frac{196}{9}}}{2}
Multiply -4 times -\frac{49}{9}.
p=\frac{0±\frac{14}{3}}{2}
Take the square root of \frac{196}{9}.
p=\frac{7}{3}
Now solve the equation p=\frac{0±\frac{14}{3}}{2} when ± is plus.
p=-\frac{7}{3}
Now solve the equation p=\frac{0±\frac{14}{3}}{2} when ± is minus.
p=\frac{7}{3} p=-\frac{7}{3}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}