Solve for n
n = \frac{\sqrt{73} + 1}{6} \approx 1.590667291
n=\frac{1-\sqrt{73}}{6}\approx -1.257333958
Share
Copied to clipboard
9n^{2}-3n-8=10
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
9n^{2}-3n-8-10=10-10
Subtract 10 from both sides of the equation.
9n^{2}-3n-8-10=0
Subtracting 10 from itself leaves 0.
9n^{2}-3n-18=0
Subtract 10 from -8.
n=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 9\left(-18\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -3 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-3\right)±\sqrt{9-4\times 9\left(-18\right)}}{2\times 9}
Square -3.
n=\frac{-\left(-3\right)±\sqrt{9-36\left(-18\right)}}{2\times 9}
Multiply -4 times 9.
n=\frac{-\left(-3\right)±\sqrt{9+648}}{2\times 9}
Multiply -36 times -18.
n=\frac{-\left(-3\right)±\sqrt{657}}{2\times 9}
Add 9 to 648.
n=\frac{-\left(-3\right)±3\sqrt{73}}{2\times 9}
Take the square root of 657.
n=\frac{3±3\sqrt{73}}{2\times 9}
The opposite of -3 is 3.
n=\frac{3±3\sqrt{73}}{18}
Multiply 2 times 9.
n=\frac{3\sqrt{73}+3}{18}
Now solve the equation n=\frac{3±3\sqrt{73}}{18} when ± is plus. Add 3 to 3\sqrt{73}.
n=\frac{\sqrt{73}+1}{6}
Divide 3+3\sqrt{73} by 18.
n=\frac{3-3\sqrt{73}}{18}
Now solve the equation n=\frac{3±3\sqrt{73}}{18} when ± is minus. Subtract 3\sqrt{73} from 3.
n=\frac{1-\sqrt{73}}{6}
Divide 3-3\sqrt{73} by 18.
n=\frac{\sqrt{73}+1}{6} n=\frac{1-\sqrt{73}}{6}
The equation is now solved.
9n^{2}-3n-8=10
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
9n^{2}-3n-8-\left(-8\right)=10-\left(-8\right)
Add 8 to both sides of the equation.
9n^{2}-3n=10-\left(-8\right)
Subtracting -8 from itself leaves 0.
9n^{2}-3n=18
Subtract -8 from 10.
\frac{9n^{2}-3n}{9}=\frac{18}{9}
Divide both sides by 9.
n^{2}+\left(-\frac{3}{9}\right)n=\frac{18}{9}
Dividing by 9 undoes the multiplication by 9.
n^{2}-\frac{1}{3}n=\frac{18}{9}
Reduce the fraction \frac{-3}{9} to lowest terms by extracting and canceling out 3.
n^{2}-\frac{1}{3}n=2
Divide 18 by 9.
n^{2}-\frac{1}{3}n+\left(-\frac{1}{6}\right)^{2}=2+\left(-\frac{1}{6}\right)^{2}
Divide -\frac{1}{3}, the coefficient of the x term, by 2 to get -\frac{1}{6}. Then add the square of -\frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-\frac{1}{3}n+\frac{1}{36}=2+\frac{1}{36}
Square -\frac{1}{6} by squaring both the numerator and the denominator of the fraction.
n^{2}-\frac{1}{3}n+\frac{1}{36}=\frac{73}{36}
Add 2 to \frac{1}{36}.
\left(n-\frac{1}{6}\right)^{2}=\frac{73}{36}
Factor n^{2}-\frac{1}{3}n+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{1}{6}\right)^{2}}=\sqrt{\frac{73}{36}}
Take the square root of both sides of the equation.
n-\frac{1}{6}=\frac{\sqrt{73}}{6} n-\frac{1}{6}=-\frac{\sqrt{73}}{6}
Simplify.
n=\frac{\sqrt{73}+1}{6} n=\frac{1-\sqrt{73}}{6}
Add \frac{1}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}