Solve for n
n = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
n = \frac{5}{2} = 2\frac{1}{2} = 2.5
Share
Copied to clipboard
9n^{2}-23n+20-3n^{2}=0
Subtract 3n^{2} from both sides.
6n^{2}-23n+20=0
Combine 9n^{2} and -3n^{2} to get 6n^{2}.
a+b=-23 ab=6\times 20=120
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 6n^{2}+an+bn+20. To find a and b, set up a system to be solved.
-1,-120 -2,-60 -3,-40 -4,-30 -5,-24 -6,-20 -8,-15 -10,-12
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 120.
-1-120=-121 -2-60=-62 -3-40=-43 -4-30=-34 -5-24=-29 -6-20=-26 -8-15=-23 -10-12=-22
Calculate the sum for each pair.
a=-15 b=-8
The solution is the pair that gives sum -23.
\left(6n^{2}-15n\right)+\left(-8n+20\right)
Rewrite 6n^{2}-23n+20 as \left(6n^{2}-15n\right)+\left(-8n+20\right).
3n\left(2n-5\right)-4\left(2n-5\right)
Factor out 3n in the first and -4 in the second group.
\left(2n-5\right)\left(3n-4\right)
Factor out common term 2n-5 by using distributive property.
n=\frac{5}{2} n=\frac{4}{3}
To find equation solutions, solve 2n-5=0 and 3n-4=0.
9n^{2}-23n+20-3n^{2}=0
Subtract 3n^{2} from both sides.
6n^{2}-23n+20=0
Combine 9n^{2} and -3n^{2} to get 6n^{2}.
n=\frac{-\left(-23\right)±\sqrt{\left(-23\right)^{2}-4\times 6\times 20}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -23 for b, and 20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-23\right)±\sqrt{529-4\times 6\times 20}}{2\times 6}
Square -23.
n=\frac{-\left(-23\right)±\sqrt{529-24\times 20}}{2\times 6}
Multiply -4 times 6.
n=\frac{-\left(-23\right)±\sqrt{529-480}}{2\times 6}
Multiply -24 times 20.
n=\frac{-\left(-23\right)±\sqrt{49}}{2\times 6}
Add 529 to -480.
n=\frac{-\left(-23\right)±7}{2\times 6}
Take the square root of 49.
n=\frac{23±7}{2\times 6}
The opposite of -23 is 23.
n=\frac{23±7}{12}
Multiply 2 times 6.
n=\frac{30}{12}
Now solve the equation n=\frac{23±7}{12} when ± is plus. Add 23 to 7.
n=\frac{5}{2}
Reduce the fraction \frac{30}{12} to lowest terms by extracting and canceling out 6.
n=\frac{16}{12}
Now solve the equation n=\frac{23±7}{12} when ± is minus. Subtract 7 from 23.
n=\frac{4}{3}
Reduce the fraction \frac{16}{12} to lowest terms by extracting and canceling out 4.
n=\frac{5}{2} n=\frac{4}{3}
The equation is now solved.
9n^{2}-23n+20-3n^{2}=0
Subtract 3n^{2} from both sides.
6n^{2}-23n+20=0
Combine 9n^{2} and -3n^{2} to get 6n^{2}.
6n^{2}-23n=-20
Subtract 20 from both sides. Anything subtracted from zero gives its negation.
\frac{6n^{2}-23n}{6}=-\frac{20}{6}
Divide both sides by 6.
n^{2}-\frac{23}{6}n=-\frac{20}{6}
Dividing by 6 undoes the multiplication by 6.
n^{2}-\frac{23}{6}n=-\frac{10}{3}
Reduce the fraction \frac{-20}{6} to lowest terms by extracting and canceling out 2.
n^{2}-\frac{23}{6}n+\left(-\frac{23}{12}\right)^{2}=-\frac{10}{3}+\left(-\frac{23}{12}\right)^{2}
Divide -\frac{23}{6}, the coefficient of the x term, by 2 to get -\frac{23}{12}. Then add the square of -\frac{23}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-\frac{23}{6}n+\frac{529}{144}=-\frac{10}{3}+\frac{529}{144}
Square -\frac{23}{12} by squaring both the numerator and the denominator of the fraction.
n^{2}-\frac{23}{6}n+\frac{529}{144}=\frac{49}{144}
Add -\frac{10}{3} to \frac{529}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(n-\frac{23}{12}\right)^{2}=\frac{49}{144}
Factor n^{2}-\frac{23}{6}n+\frac{529}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{23}{12}\right)^{2}}=\sqrt{\frac{49}{144}}
Take the square root of both sides of the equation.
n-\frac{23}{12}=\frac{7}{12} n-\frac{23}{12}=-\frac{7}{12}
Simplify.
n=\frac{5}{2} n=\frac{4}{3}
Add \frac{23}{12} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}