Solve for n
n = \frac{\sqrt{193} + 7}{18} \approx 1.160691333
n=\frac{7-\sqrt{193}}{18}\approx -0.382913555
Share
Copied to clipboard
9n^{2}-4=7n
Subtract 4 from both sides.
9n^{2}-4-7n=0
Subtract 7n from both sides.
9n^{2}-7n-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 9\left(-4\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -7 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-7\right)±\sqrt{49-4\times 9\left(-4\right)}}{2\times 9}
Square -7.
n=\frac{-\left(-7\right)±\sqrt{49-36\left(-4\right)}}{2\times 9}
Multiply -4 times 9.
n=\frac{-\left(-7\right)±\sqrt{49+144}}{2\times 9}
Multiply -36 times -4.
n=\frac{-\left(-7\right)±\sqrt{193}}{2\times 9}
Add 49 to 144.
n=\frac{7±\sqrt{193}}{2\times 9}
The opposite of -7 is 7.
n=\frac{7±\sqrt{193}}{18}
Multiply 2 times 9.
n=\frac{\sqrt{193}+7}{18}
Now solve the equation n=\frac{7±\sqrt{193}}{18} when ± is plus. Add 7 to \sqrt{193}.
n=\frac{7-\sqrt{193}}{18}
Now solve the equation n=\frac{7±\sqrt{193}}{18} when ± is minus. Subtract \sqrt{193} from 7.
n=\frac{\sqrt{193}+7}{18} n=\frac{7-\sqrt{193}}{18}
The equation is now solved.
9n^{2}-7n=4
Subtract 7n from both sides.
\frac{9n^{2}-7n}{9}=\frac{4}{9}
Divide both sides by 9.
n^{2}-\frac{7}{9}n=\frac{4}{9}
Dividing by 9 undoes the multiplication by 9.
n^{2}-\frac{7}{9}n+\left(-\frac{7}{18}\right)^{2}=\frac{4}{9}+\left(-\frac{7}{18}\right)^{2}
Divide -\frac{7}{9}, the coefficient of the x term, by 2 to get -\frac{7}{18}. Then add the square of -\frac{7}{18} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-\frac{7}{9}n+\frac{49}{324}=\frac{4}{9}+\frac{49}{324}
Square -\frac{7}{18} by squaring both the numerator and the denominator of the fraction.
n^{2}-\frac{7}{9}n+\frac{49}{324}=\frac{193}{324}
Add \frac{4}{9} to \frac{49}{324} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(n-\frac{7}{18}\right)^{2}=\frac{193}{324}
Factor n^{2}-\frac{7}{9}n+\frac{49}{324}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{7}{18}\right)^{2}}=\sqrt{\frac{193}{324}}
Take the square root of both sides of the equation.
n-\frac{7}{18}=\frac{\sqrt{193}}{18} n-\frac{7}{18}=-\frac{\sqrt{193}}{18}
Simplify.
n=\frac{\sqrt{193}+7}{18} n=\frac{7-\sqrt{193}}{18}
Add \frac{7}{18} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}