Solve for n
n = -\frac{7}{3} = -2\frac{1}{3} \approx -2.333333333
n=0
Share
Copied to clipboard
n\left(9n+21\right)=0
Factor out n.
n=0 n=-\frac{7}{3}
To find equation solutions, solve n=0 and 9n+21=0.
9n^{2}+21n=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-21±\sqrt{21^{2}}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 21 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-21±21}{2\times 9}
Take the square root of 21^{2}.
n=\frac{-21±21}{18}
Multiply 2 times 9.
n=\frac{0}{18}
Now solve the equation n=\frac{-21±21}{18} when ± is plus. Add -21 to 21.
n=0
Divide 0 by 18.
n=-\frac{42}{18}
Now solve the equation n=\frac{-21±21}{18} when ± is minus. Subtract 21 from -21.
n=-\frac{7}{3}
Reduce the fraction \frac{-42}{18} to lowest terms by extracting and canceling out 6.
n=0 n=-\frac{7}{3}
The equation is now solved.
9n^{2}+21n=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{9n^{2}+21n}{9}=\frac{0}{9}
Divide both sides by 9.
n^{2}+\frac{21}{9}n=\frac{0}{9}
Dividing by 9 undoes the multiplication by 9.
n^{2}+\frac{7}{3}n=\frac{0}{9}
Reduce the fraction \frac{21}{9} to lowest terms by extracting and canceling out 3.
n^{2}+\frac{7}{3}n=0
Divide 0 by 9.
n^{2}+\frac{7}{3}n+\left(\frac{7}{6}\right)^{2}=\left(\frac{7}{6}\right)^{2}
Divide \frac{7}{3}, the coefficient of the x term, by 2 to get \frac{7}{6}. Then add the square of \frac{7}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+\frac{7}{3}n+\frac{49}{36}=\frac{49}{36}
Square \frac{7}{6} by squaring both the numerator and the denominator of the fraction.
\left(n+\frac{7}{6}\right)^{2}=\frac{49}{36}
Factor n^{2}+\frac{7}{3}n+\frac{49}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{7}{6}\right)^{2}}=\sqrt{\frac{49}{36}}
Take the square root of both sides of the equation.
n+\frac{7}{6}=\frac{7}{6} n+\frac{7}{6}=-\frac{7}{6}
Simplify.
n=0 n=-\frac{7}{3}
Subtract \frac{7}{6} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}