Factor
m\left(3m-10\right)\left(3m-2\right)
Evaluate
m\left(3m-10\right)\left(3m-2\right)
Share
Copied to clipboard
m\left(9m^{2}-36m+20\right)
Factor out m.
a+b=-36 ab=9\times 20=180
Consider 9m^{2}-36m+20. Factor the expression by grouping. First, the expression needs to be rewritten as 9m^{2}+am+bm+20. To find a and b, set up a system to be solved.
-1,-180 -2,-90 -3,-60 -4,-45 -5,-36 -6,-30 -9,-20 -10,-18 -12,-15
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 180.
-1-180=-181 -2-90=-92 -3-60=-63 -4-45=-49 -5-36=-41 -6-30=-36 -9-20=-29 -10-18=-28 -12-15=-27
Calculate the sum for each pair.
a=-30 b=-6
The solution is the pair that gives sum -36.
\left(9m^{2}-30m\right)+\left(-6m+20\right)
Rewrite 9m^{2}-36m+20 as \left(9m^{2}-30m\right)+\left(-6m+20\right).
3m\left(3m-10\right)-2\left(3m-10\right)
Factor out 3m in the first and -2 in the second group.
\left(3m-10\right)\left(3m-2\right)
Factor out common term 3m-10 by using distributive property.
m\left(3m-10\right)\left(3m-2\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}