Skip to main content
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

9m^{2}+28m-36=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-28±\sqrt{28^{2}-4\times 9\left(-36\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 28 for b, and -36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-28±\sqrt{784-4\times 9\left(-36\right)}}{2\times 9}
Square 28.
m=\frac{-28±\sqrt{784-36\left(-36\right)}}{2\times 9}
Multiply -4 times 9.
m=\frac{-28±\sqrt{784+1296}}{2\times 9}
Multiply -36 times -36.
m=\frac{-28±\sqrt{2080}}{2\times 9}
Add 784 to 1296.
m=\frac{-28±4\sqrt{130}}{2\times 9}
Take the square root of 2080.
m=\frac{-28±4\sqrt{130}}{18}
Multiply 2 times 9.
m=\frac{4\sqrt{130}-28}{18}
Now solve the equation m=\frac{-28±4\sqrt{130}}{18} when ± is plus. Add -28 to 4\sqrt{130}.
m=\frac{2\sqrt{130}-14}{9}
Divide -28+4\sqrt{130} by 18.
m=\frac{-4\sqrt{130}-28}{18}
Now solve the equation m=\frac{-28±4\sqrt{130}}{18} when ± is minus. Subtract 4\sqrt{130} from -28.
m=\frac{-2\sqrt{130}-14}{9}
Divide -28-4\sqrt{130} by 18.
m=\frac{2\sqrt{130}-14}{9} m=\frac{-2\sqrt{130}-14}{9}
The equation is now solved.
9m^{2}+28m-36=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
9m^{2}+28m-36-\left(-36\right)=-\left(-36\right)
Add 36 to both sides of the equation.
9m^{2}+28m=-\left(-36\right)
Subtracting -36 from itself leaves 0.
9m^{2}+28m=36
Subtract -36 from 0.
\frac{9m^{2}+28m}{9}=\frac{36}{9}
Divide both sides by 9.
m^{2}+\frac{28}{9}m=\frac{36}{9}
Dividing by 9 undoes the multiplication by 9.
m^{2}+\frac{28}{9}m=4
Divide 36 by 9.
m^{2}+\frac{28}{9}m+\left(\frac{14}{9}\right)^{2}=4+\left(\frac{14}{9}\right)^{2}
Divide \frac{28}{9}, the coefficient of the x term, by 2 to get \frac{14}{9}. Then add the square of \frac{14}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}+\frac{28}{9}m+\frac{196}{81}=4+\frac{196}{81}
Square \frac{14}{9} by squaring both the numerator and the denominator of the fraction.
m^{2}+\frac{28}{9}m+\frac{196}{81}=\frac{520}{81}
Add 4 to \frac{196}{81}.
\left(m+\frac{14}{9}\right)^{2}=\frac{520}{81}
Factor m^{2}+\frac{28}{9}m+\frac{196}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+\frac{14}{9}\right)^{2}}=\sqrt{\frac{520}{81}}
Take the square root of both sides of the equation.
m+\frac{14}{9}=\frac{2\sqrt{130}}{9} m+\frac{14}{9}=-\frac{2\sqrt{130}}{9}
Simplify.
m=\frac{2\sqrt{130}-14}{9} m=\frac{-2\sqrt{130}-14}{9}
Subtract \frac{14}{9} from both sides of the equation.
x ^ 2 +\frac{28}{9}x -4 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 9
r + s = -\frac{28}{9} rs = -4
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{14}{9} - u s = -\frac{14}{9} + u
Two numbers r and s sum up to -\frac{28}{9} exactly when the average of the two numbers is \frac{1}{2}*-\frac{28}{9} = -\frac{14}{9}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{14}{9} - u) (-\frac{14}{9} + u) = -4
To solve for unknown quantity u, substitute these in the product equation rs = -4
\frac{196}{81} - u^2 = -4
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -4-\frac{196}{81} = -\frac{520}{81}
Simplify the expression by subtracting \frac{196}{81} on both sides
u^2 = \frac{520}{81} u = \pm\sqrt{\frac{520}{81}} = \pm \frac{\sqrt{520}}{9}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{14}{9} - \frac{\sqrt{520}}{9} = -4.089 s = -\frac{14}{9} + \frac{\sqrt{520}}{9} = 0.978
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.