Skip to main content
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

9k\left(4k^{2}+1\right)+\left(4k^{2}+1\right)\left(-3\right)=4k\left(3k-1\right)
Multiply both sides of the equation by 4k^{2}+1.
36k^{3}+9k+\left(4k^{2}+1\right)\left(-3\right)=4k\left(3k-1\right)
Use the distributive property to multiply 9k by 4k^{2}+1.
36k^{3}+9k-12k^{2}-3=4k\left(3k-1\right)
Use the distributive property to multiply 4k^{2}+1 by -3.
36k^{3}+9k-12k^{2}-3=12k^{2}-4k
Use the distributive property to multiply 4k by 3k-1.
36k^{3}+9k-12k^{2}-3-12k^{2}=-4k
Subtract 12k^{2} from both sides.
36k^{3}+9k-24k^{2}-3=-4k
Combine -12k^{2} and -12k^{2} to get -24k^{2}.
36k^{3}+9k-24k^{2}-3+4k=0
Add 4k to both sides.
36k^{3}+13k-24k^{2}-3=0
Combine 9k and 4k to get 13k.
36k^{3}-24k^{2}+13k-3=0
Rearrange the equation to put it in standard form. Place the terms in order from highest to lowest power.
±\frac{1}{12},±\frac{1}{6},±\frac{1}{4},±\frac{1}{3},±\frac{1}{2},±\frac{3}{4},±1,±\frac{3}{2},±3,±\frac{1}{36},±\frac{1}{18},±\frac{1}{9}
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -3 and q divides the leading coefficient 36. List all candidates \frac{p}{q}.
k=\frac{1}{3}
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
12k^{2}-4k+3=0
By Factor theorem, k-k is a factor of the polynomial for each root k. Divide 36k^{3}-24k^{2}+13k-3 by 3\left(k-\frac{1}{3}\right)=3k-1 to get 12k^{2}-4k+3. Solve the equation where the result equals to 0.
k=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 12\times 3}}{2\times 12}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 12 for a, -4 for b, and 3 for c in the quadratic formula.
k=\frac{4±\sqrt{-128}}{24}
Do the calculations.
k\in \emptyset
Since the square root of a negative number is not defined in the real field, there are no solutions.
k=\frac{1}{3}
List all found solutions.