Skip to main content
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

9k^{4}+\frac{27}{4}k^{2}=4-4k^{2}
Use the distributive property to multiply 9k^{2} by k^{2}+\frac{3}{4}.
9k^{4}+\frac{27}{4}k^{2}-4=-4k^{2}
Subtract 4 from both sides.
9k^{4}+\frac{27}{4}k^{2}-4+4k^{2}=0
Add 4k^{2} to both sides.
9k^{4}+\frac{43}{4}k^{2}-4=0
Combine \frac{27}{4}k^{2} and 4k^{2} to get \frac{43}{4}k^{2}.
9t^{2}+\frac{43}{4}t-4=0
Substitute t for k^{2}.
t=\frac{-\frac{43}{4}±\sqrt{\left(\frac{43}{4}\right)^{2}-4\times 9\left(-4\right)}}{2\times 9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 9 for a, \frac{43}{4} for b, and -4 for c in the quadratic formula.
t=\frac{-\frac{43}{4}±\frac{1}{4}\sqrt{4153}}{18}
Do the calculations.
t=\frac{\sqrt{4153}-43}{72} t=\frac{-\sqrt{4153}-43}{72}
Solve the equation t=\frac{-\frac{43}{4}±\frac{1}{4}\sqrt{4153}}{18} when ± is plus and when ± is minus.
k=\frac{\sqrt{\frac{\sqrt{4153}-43}{2}}}{6} k=-\frac{\sqrt{\frac{\sqrt{4153}-43}{2}}}{6}
Since k=t^{2}, the solutions are obtained by evaluating k=±\sqrt{t} for positive t.