Solve for k
k=-\frac{\sqrt{2\left(\sqrt{4153}-43\right)}}{12}\approx -0.54573821
k=\frac{\sqrt{2\left(\sqrt{4153}-43\right)}}{12}\approx 0.54573821
Share
Copied to clipboard
9k^{4}+\frac{27}{4}k^{2}=4-4k^{2}
Use the distributive property to multiply 9k^{2} by k^{2}+\frac{3}{4}.
9k^{4}+\frac{27}{4}k^{2}-4=-4k^{2}
Subtract 4 from both sides.
9k^{4}+\frac{27}{4}k^{2}-4+4k^{2}=0
Add 4k^{2} to both sides.
9k^{4}+\frac{43}{4}k^{2}-4=0
Combine \frac{27}{4}k^{2} and 4k^{2} to get \frac{43}{4}k^{2}.
9t^{2}+\frac{43}{4}t-4=0
Substitute t for k^{2}.
t=\frac{-\frac{43}{4}±\sqrt{\left(\frac{43}{4}\right)^{2}-4\times 9\left(-4\right)}}{2\times 9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 9 for a, \frac{43}{4} for b, and -4 for c in the quadratic formula.
t=\frac{-\frac{43}{4}±\frac{1}{4}\sqrt{4153}}{18}
Do the calculations.
t=\frac{\sqrt{4153}-43}{72} t=\frac{-\sqrt{4153}-43}{72}
Solve the equation t=\frac{-\frac{43}{4}±\frac{1}{4}\sqrt{4153}}{18} when ± is plus and when ± is minus.
k=\frac{\sqrt{\frac{\sqrt{4153}-43}{2}}}{6} k=-\frac{\sqrt{\frac{\sqrt{4153}-43}{2}}}{6}
Since k=t^{2}, the solutions are obtained by evaluating k=±\sqrt{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}