Solve for g
g=\frac{x+27g_{0}-8g_{5}}{2}
Solve for g_0
g_{0}=\frac{8g_{5}+2g-x}{27}
Graph
Share
Copied to clipboard
27g_{0}-\left(8g_{5}-x\right)=2g
Multiply 9 and 3 to get 27.
27g_{0}-8g_{5}+x=2g
To find the opposite of 8g_{5}-x, find the opposite of each term.
2g=27g_{0}-8g_{5}+x
Swap sides so that all variable terms are on the left hand side.
2g=x+27g_{0}-8g_{5}
The equation is in standard form.
\frac{2g}{2}=\frac{x+27g_{0}-8g_{5}}{2}
Divide both sides by 2.
g=\frac{x+27g_{0}-8g_{5}}{2}
Dividing by 2 undoes the multiplication by 2.
g=\frac{x}{2}+\frac{27g_{0}}{2}-4g_{5}
Divide 27g_{0}-8g_{5}+x by 2.
27g_{0}-\left(8g_{5}-x\right)=2g
Multiply 9 and 3 to get 27.
27g_{0}-8g_{5}+x=2g
To find the opposite of 8g_{5}-x, find the opposite of each term.
27g_{0}+x=2g+8g_{5}
Add 8g_{5} to both sides.
27g_{0}=2g+8g_{5}-x
Subtract x from both sides.
27g_{0}=8g_{5}+2g-x
The equation is in standard form.
\frac{27g_{0}}{27}=\frac{8g_{5}+2g-x}{27}
Divide both sides by 27.
g_{0}=\frac{8g_{5}+2g-x}{27}
Dividing by 27 undoes the multiplication by 27.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}