Skip to main content
Solve for g
Tick mark Image

Similar Problems from Web Search

Share

9g^{2}+4g-7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
g=\frac{-4±\sqrt{4^{2}-4\times 9\left(-7\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 4 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
g=\frac{-4±\sqrt{16-4\times 9\left(-7\right)}}{2\times 9}
Square 4.
g=\frac{-4±\sqrt{16-36\left(-7\right)}}{2\times 9}
Multiply -4 times 9.
g=\frac{-4±\sqrt{16+252}}{2\times 9}
Multiply -36 times -7.
g=\frac{-4±\sqrt{268}}{2\times 9}
Add 16 to 252.
g=\frac{-4±2\sqrt{67}}{2\times 9}
Take the square root of 268.
g=\frac{-4±2\sqrt{67}}{18}
Multiply 2 times 9.
g=\frac{2\sqrt{67}-4}{18}
Now solve the equation g=\frac{-4±2\sqrt{67}}{18} when ± is plus. Add -4 to 2\sqrt{67}.
g=\frac{\sqrt{67}-2}{9}
Divide -4+2\sqrt{67} by 18.
g=\frac{-2\sqrt{67}-4}{18}
Now solve the equation g=\frac{-4±2\sqrt{67}}{18} when ± is minus. Subtract 2\sqrt{67} from -4.
g=\frac{-\sqrt{67}-2}{9}
Divide -4-2\sqrt{67} by 18.
g=\frac{\sqrt{67}-2}{9} g=\frac{-\sqrt{67}-2}{9}
The equation is now solved.
9g^{2}+4g-7=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
9g^{2}+4g-7-\left(-7\right)=-\left(-7\right)
Add 7 to both sides of the equation.
9g^{2}+4g=-\left(-7\right)
Subtracting -7 from itself leaves 0.
9g^{2}+4g=7
Subtract -7 from 0.
\frac{9g^{2}+4g}{9}=\frac{7}{9}
Divide both sides by 9.
g^{2}+\frac{4}{9}g=\frac{7}{9}
Dividing by 9 undoes the multiplication by 9.
g^{2}+\frac{4}{9}g+\left(\frac{2}{9}\right)^{2}=\frac{7}{9}+\left(\frac{2}{9}\right)^{2}
Divide \frac{4}{9}, the coefficient of the x term, by 2 to get \frac{2}{9}. Then add the square of \frac{2}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
g^{2}+\frac{4}{9}g+\frac{4}{81}=\frac{7}{9}+\frac{4}{81}
Square \frac{2}{9} by squaring both the numerator and the denominator of the fraction.
g^{2}+\frac{4}{9}g+\frac{4}{81}=\frac{67}{81}
Add \frac{7}{9} to \frac{4}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(g+\frac{2}{9}\right)^{2}=\frac{67}{81}
Factor g^{2}+\frac{4}{9}g+\frac{4}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(g+\frac{2}{9}\right)^{2}}=\sqrt{\frac{67}{81}}
Take the square root of both sides of the equation.
g+\frac{2}{9}=\frac{\sqrt{67}}{9} g+\frac{2}{9}=-\frac{\sqrt{67}}{9}
Simplify.
g=\frac{\sqrt{67}-2}{9} g=\frac{-\sqrt{67}-2}{9}
Subtract \frac{2}{9} from both sides of the equation.
x ^ 2 +\frac{4}{9}x -\frac{7}{9} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 9
r + s = -\frac{4}{9} rs = -\frac{7}{9}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{2}{9} - u s = -\frac{2}{9} + u
Two numbers r and s sum up to -\frac{4}{9} exactly when the average of the two numbers is \frac{1}{2}*-\frac{4}{9} = -\frac{2}{9}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{2}{9} - u) (-\frac{2}{9} + u) = -\frac{7}{9}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{7}{9}
\frac{4}{81} - u^2 = -\frac{7}{9}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{7}{9}-\frac{4}{81} = -\frac{67}{81}
Simplify the expression by subtracting \frac{4}{81} on both sides
u^2 = \frac{67}{81} u = \pm\sqrt{\frac{67}{81}} = \pm \frac{\sqrt{67}}{9}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{2}{9} - \frac{\sqrt{67}}{9} = -1.132 s = -\frac{2}{9} + \frac{\sqrt{67}}{9} = 0.687
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.