Solve for d
d=-\frac{\sqrt{420-3\sqrt{18969}}}{3}\approx -0.870250386
d=\frac{\sqrt{420-3\sqrt{18969}}}{3}\approx 0.870250386
d = \frac{\sqrt{3 \sqrt{18969} + 420}}{3} \approx 9.621642147
d = -\frac{\sqrt{3 \sqrt{18969} + 420}}{3} \approx -9.621642147
Share
Copied to clipboard
9t^{2}-840t+631=0
Substitute t for d^{2}.
t=\frac{-\left(-840\right)±\sqrt{\left(-840\right)^{2}-4\times 9\times 631}}{2\times 9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 9 for a, -840 for b, and 631 for c in the quadratic formula.
t=\frac{840±6\sqrt{18969}}{18}
Do the calculations.
t=\frac{\sqrt{18969}+140}{3} t=\frac{140-\sqrt{18969}}{3}
Solve the equation t=\frac{840±6\sqrt{18969}}{18} when ± is plus and when ± is minus.
d=\sqrt{\frac{\sqrt{18969}+140}{3}} d=-\sqrt{\frac{\sqrt{18969}+140}{3}} d=\sqrt{\frac{140-\sqrt{18969}}{3}} d=-\sqrt{\frac{140-\sqrt{18969}}{3}}
Since d=t^{2}, the solutions are obtained by evaluating d=±\sqrt{t} for each t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}