Skip to main content
Solve for d
Tick mark Image

Similar Problems from Web Search

Share

9t^{2}-840t+631=0
Substitute t for d^{2}.
t=\frac{-\left(-840\right)±\sqrt{\left(-840\right)^{2}-4\times 9\times 631}}{2\times 9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 9 for a, -840 for b, and 631 for c in the quadratic formula.
t=\frac{840±6\sqrt{18969}}{18}
Do the calculations.
t=\frac{\sqrt{18969}+140}{3} t=\frac{140-\sqrt{18969}}{3}
Solve the equation t=\frac{840±6\sqrt{18969}}{18} when ± is plus and when ± is minus.
d=\sqrt{\frac{\sqrt{18969}+140}{3}} d=-\sqrt{\frac{\sqrt{18969}+140}{3}} d=\sqrt{\frac{140-\sqrt{18969}}{3}} d=-\sqrt{\frac{140-\sqrt{18969}}{3}}
Since d=t^{2}, the solutions are obtained by evaluating d=±\sqrt{t} for each t.