Solve for c
c=0
Share
Copied to clipboard
9c^{2}-99c+10\left(5c-3\right)=3c\left(c+5\right)+c\left(6c-3\right)-30
Use the distributive property to multiply 9c by c-11.
9c^{2}-99c+50c-30=3c\left(c+5\right)+c\left(6c-3\right)-30
Use the distributive property to multiply 10 by 5c-3.
9c^{2}-49c-30=3c\left(c+5\right)+c\left(6c-3\right)-30
Combine -99c and 50c to get -49c.
9c^{2}-49c-30=3c^{2}+15c+c\left(6c-3\right)-30
Use the distributive property to multiply 3c by c+5.
9c^{2}-49c-30=3c^{2}+15c+6c^{2}-3c-30
Use the distributive property to multiply c by 6c-3.
9c^{2}-49c-30=9c^{2}+15c-3c-30
Combine 3c^{2} and 6c^{2} to get 9c^{2}.
9c^{2}-49c-30=9c^{2}+12c-30
Combine 15c and -3c to get 12c.
9c^{2}-49c-30-9c^{2}=12c-30
Subtract 9c^{2} from both sides.
-49c-30=12c-30
Combine 9c^{2} and -9c^{2} to get 0.
-49c-30-12c=-30
Subtract 12c from both sides.
-61c-30=-30
Combine -49c and -12c to get -61c.
-61c=-30+30
Add 30 to both sides.
-61c=0
Add -30 and 30 to get 0.
c=0
Product of two numbers is equal to 0 if at least one of them is 0. Since -61 is not equal to 0, c must be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}