Solve for a
a = \frac{180}{41} = 4\frac{16}{41} \approx 4.390243902
Share
Copied to clipboard
\left(9a-20\right)^{2}=\left(\sqrt{400-a^{2}}\right)^{2}
Square both sides of the equation.
81a^{2}-360a+400=\left(\sqrt{400-a^{2}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(9a-20\right)^{2}.
81a^{2}-360a+400=400-a^{2}
Calculate \sqrt{400-a^{2}} to the power of 2 and get 400-a^{2}.
81a^{2}-360a+400-400=-a^{2}
Subtract 400 from both sides.
81a^{2}-360a=-a^{2}
Subtract 400 from 400 to get 0.
81a^{2}-360a+a^{2}=0
Add a^{2} to both sides.
82a^{2}-360a=0
Combine 81a^{2} and a^{2} to get 82a^{2}.
a\left(82a-360\right)=0
Factor out a.
a=0 a=\frac{180}{41}
To find equation solutions, solve a=0 and 82a-360=0.
9\times 0-20=\sqrt{400-0^{2}}
Substitute 0 for a in the equation 9a-20=\sqrt{400-a^{2}}.
-20=20
Simplify. The value a=0 does not satisfy the equation because the left and the right hand side have opposite signs.
9\times \frac{180}{41}-20=\sqrt{400-\left(\frac{180}{41}\right)^{2}}
Substitute \frac{180}{41} for a in the equation 9a-20=\sqrt{400-a^{2}}.
\frac{800}{41}=\frac{800}{41}
Simplify. The value a=\frac{180}{41} satisfies the equation.
a=\frac{180}{41}
Equation 9a-20=\sqrt{400-a^{2}} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}