Factor
\left(3a-2\right)\left(3a-1\right)
Evaluate
\left(3a-2\right)\left(3a-1\right)
Share
Copied to clipboard
p+q=-9 pq=9\times 2=18
Factor the expression by grouping. First, the expression needs to be rewritten as 9a^{2}+pa+qa+2. To find p and q, set up a system to be solved.
-1,-18 -2,-9 -3,-6
Since pq is positive, p and q have the same sign. Since p+q is negative, p and q are both negative. List all such integer pairs that give product 18.
-1-18=-19 -2-9=-11 -3-6=-9
Calculate the sum for each pair.
p=-6 q=-3
The solution is the pair that gives sum -9.
\left(9a^{2}-6a\right)+\left(-3a+2\right)
Rewrite 9a^{2}-9a+2 as \left(9a^{2}-6a\right)+\left(-3a+2\right).
3a\left(3a-2\right)-\left(3a-2\right)
Factor out 3a in the first and -1 in the second group.
\left(3a-2\right)\left(3a-1\right)
Factor out common term 3a-2 by using distributive property.
9a^{2}-9a+2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 9\times 2}}{2\times 9}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-9\right)±\sqrt{81-4\times 9\times 2}}{2\times 9}
Square -9.
a=\frac{-\left(-9\right)±\sqrt{81-36\times 2}}{2\times 9}
Multiply -4 times 9.
a=\frac{-\left(-9\right)±\sqrt{81-72}}{2\times 9}
Multiply -36 times 2.
a=\frac{-\left(-9\right)±\sqrt{9}}{2\times 9}
Add 81 to -72.
a=\frac{-\left(-9\right)±3}{2\times 9}
Take the square root of 9.
a=\frac{9±3}{2\times 9}
The opposite of -9 is 9.
a=\frac{9±3}{18}
Multiply 2 times 9.
a=\frac{12}{18}
Now solve the equation a=\frac{9±3}{18} when ± is plus. Add 9 to 3.
a=\frac{2}{3}
Reduce the fraction \frac{12}{18} to lowest terms by extracting and canceling out 6.
a=\frac{6}{18}
Now solve the equation a=\frac{9±3}{18} when ± is minus. Subtract 3 from 9.
a=\frac{1}{3}
Reduce the fraction \frac{6}{18} to lowest terms by extracting and canceling out 6.
9a^{2}-9a+2=9\left(a-\frac{2}{3}\right)\left(a-\frac{1}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{2}{3} for x_{1} and \frac{1}{3} for x_{2}.
9a^{2}-9a+2=9\times \frac{3a-2}{3}\left(a-\frac{1}{3}\right)
Subtract \frac{2}{3} from a by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
9a^{2}-9a+2=9\times \frac{3a-2}{3}\times \frac{3a-1}{3}
Subtract \frac{1}{3} from a by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
9a^{2}-9a+2=9\times \frac{\left(3a-2\right)\left(3a-1\right)}{3\times 3}
Multiply \frac{3a-2}{3} times \frac{3a-1}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
9a^{2}-9a+2=9\times \frac{\left(3a-2\right)\left(3a-1\right)}{9}
Multiply 3 times 3.
9a^{2}-9a+2=\left(3a-2\right)\left(3a-1\right)
Cancel out 9, the greatest common factor in 9 and 9.
x ^ 2 -1x +\frac{2}{9} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 9
r + s = 1 rs = \frac{2}{9}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{1}{2} - u s = \frac{1}{2} + u
Two numbers r and s sum up to 1 exactly when the average of the two numbers is \frac{1}{2}*1 = \frac{1}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{1}{2} - u) (\frac{1}{2} + u) = \frac{2}{9}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{2}{9}
\frac{1}{4} - u^2 = \frac{2}{9}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{2}{9}-\frac{1}{4} = -\frac{1}{36}
Simplify the expression by subtracting \frac{1}{4} on both sides
u^2 = \frac{1}{36} u = \pm\sqrt{\frac{1}{36}} = \pm \frac{1}{6}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{1}{2} - \frac{1}{6} = 0.333 s = \frac{1}{2} + \frac{1}{6} = 0.667
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}