Solve for a
a=\frac{5+\sqrt{11}i}{9}\approx 0.555555556+0.368513866i
a=\frac{-\sqrt{11}i+5}{9}\approx 0.555555556-0.368513866i
Share
Copied to clipboard
9a^{2}-10a+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 9\times 4}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -10 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-10\right)±\sqrt{100-4\times 9\times 4}}{2\times 9}
Square -10.
a=\frac{-\left(-10\right)±\sqrt{100-36\times 4}}{2\times 9}
Multiply -4 times 9.
a=\frac{-\left(-10\right)±\sqrt{100-144}}{2\times 9}
Multiply -36 times 4.
a=\frac{-\left(-10\right)±\sqrt{-44}}{2\times 9}
Add 100 to -144.
a=\frac{-\left(-10\right)±2\sqrt{11}i}{2\times 9}
Take the square root of -44.
a=\frac{10±2\sqrt{11}i}{2\times 9}
The opposite of -10 is 10.
a=\frac{10±2\sqrt{11}i}{18}
Multiply 2 times 9.
a=\frac{10+2\sqrt{11}i}{18}
Now solve the equation a=\frac{10±2\sqrt{11}i}{18} when ± is plus. Add 10 to 2i\sqrt{11}.
a=\frac{5+\sqrt{11}i}{9}
Divide 10+2i\sqrt{11} by 18.
a=\frac{-2\sqrt{11}i+10}{18}
Now solve the equation a=\frac{10±2\sqrt{11}i}{18} when ± is minus. Subtract 2i\sqrt{11} from 10.
a=\frac{-\sqrt{11}i+5}{9}
Divide 10-2i\sqrt{11} by 18.
a=\frac{5+\sqrt{11}i}{9} a=\frac{-\sqrt{11}i+5}{9}
The equation is now solved.
9a^{2}-10a+4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
9a^{2}-10a+4-4=-4
Subtract 4 from both sides of the equation.
9a^{2}-10a=-4
Subtracting 4 from itself leaves 0.
\frac{9a^{2}-10a}{9}=-\frac{4}{9}
Divide both sides by 9.
a^{2}-\frac{10}{9}a=-\frac{4}{9}
Dividing by 9 undoes the multiplication by 9.
a^{2}-\frac{10}{9}a+\left(-\frac{5}{9}\right)^{2}=-\frac{4}{9}+\left(-\frac{5}{9}\right)^{2}
Divide -\frac{10}{9}, the coefficient of the x term, by 2 to get -\frac{5}{9}. Then add the square of -\frac{5}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-\frac{10}{9}a+\frac{25}{81}=-\frac{4}{9}+\frac{25}{81}
Square -\frac{5}{9} by squaring both the numerator and the denominator of the fraction.
a^{2}-\frac{10}{9}a+\frac{25}{81}=-\frac{11}{81}
Add -\frac{4}{9} to \frac{25}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a-\frac{5}{9}\right)^{2}=-\frac{11}{81}
Factor a^{2}-\frac{10}{9}a+\frac{25}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{5}{9}\right)^{2}}=\sqrt{-\frac{11}{81}}
Take the square root of both sides of the equation.
a-\frac{5}{9}=\frac{\sqrt{11}i}{9} a-\frac{5}{9}=-\frac{\sqrt{11}i}{9}
Simplify.
a=\frac{5+\sqrt{11}i}{9} a=\frac{-\sqrt{11}i+5}{9}
Add \frac{5}{9} to both sides of the equation.
x ^ 2 -\frac{10}{9}x +\frac{4}{9} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 9
r + s = \frac{10}{9} rs = \frac{4}{9}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{5}{9} - u s = \frac{5}{9} + u
Two numbers r and s sum up to \frac{10}{9} exactly when the average of the two numbers is \frac{1}{2}*\frac{10}{9} = \frac{5}{9}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{5}{9} - u) (\frac{5}{9} + u) = \frac{4}{9}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{4}{9}
\frac{25}{81} - u^2 = \frac{4}{9}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{4}{9}-\frac{25}{81} = \frac{11}{81}
Simplify the expression by subtracting \frac{25}{81} on both sides
u^2 = -\frac{11}{81} u = \pm\sqrt{-\frac{11}{81}} = \pm \frac{\sqrt{11}}{9}i
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{5}{9} - \frac{\sqrt{11}}{9}i = 0.556 - 0.369i s = \frac{5}{9} + \frac{\sqrt{11}}{9}i = 0.556 + 0.369i
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}