Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

9a^{2}=-20
Subtract 20 from both sides. Anything subtracted from zero gives its negation.
a^{2}=-\frac{20}{9}
Divide both sides by 9.
a=\frac{2\sqrt{5}i}{3} a=-\frac{2\sqrt{5}i}{3}
The equation is now solved.
9a^{2}+20=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
a=\frac{0±\sqrt{0^{2}-4\times 9\times 20}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 0 for b, and 20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\times 9\times 20}}{2\times 9}
Square 0.
a=\frac{0±\sqrt{-36\times 20}}{2\times 9}
Multiply -4 times 9.
a=\frac{0±\sqrt{-720}}{2\times 9}
Multiply -36 times 20.
a=\frac{0±12\sqrt{5}i}{2\times 9}
Take the square root of -720.
a=\frac{0±12\sqrt{5}i}{18}
Multiply 2 times 9.
a=\frac{2\sqrt{5}i}{3}
Now solve the equation a=\frac{0±12\sqrt{5}i}{18} when ± is plus.
a=-\frac{2\sqrt{5}i}{3}
Now solve the equation a=\frac{0±12\sqrt{5}i}{18} when ± is minus.
a=\frac{2\sqrt{5}i}{3} a=-\frac{2\sqrt{5}i}{3}
The equation is now solved.