Skip to main content
Solve for D
Tick mark Image

Similar Problems from Web Search

Share

9D^{2}-245D+500=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
D=\frac{-\left(-245\right)±\sqrt{\left(-245\right)^{2}-4\times 9\times 500}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -245 for b, and 500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
D=\frac{-\left(-245\right)±\sqrt{60025-4\times 9\times 500}}{2\times 9}
Square -245.
D=\frac{-\left(-245\right)±\sqrt{60025-36\times 500}}{2\times 9}
Multiply -4 times 9.
D=\frac{-\left(-245\right)±\sqrt{60025-18000}}{2\times 9}
Multiply -36 times 500.
D=\frac{-\left(-245\right)±\sqrt{42025}}{2\times 9}
Add 60025 to -18000.
D=\frac{-\left(-245\right)±205}{2\times 9}
Take the square root of 42025.
D=\frac{245±205}{2\times 9}
The opposite of -245 is 245.
D=\frac{245±205}{18}
Multiply 2 times 9.
D=\frac{450}{18}
Now solve the equation D=\frac{245±205}{18} when ± is plus. Add 245 to 205.
D=25
Divide 450 by 18.
D=\frac{40}{18}
Now solve the equation D=\frac{245±205}{18} when ± is minus. Subtract 205 from 245.
D=\frac{20}{9}
Reduce the fraction \frac{40}{18} to lowest terms by extracting and canceling out 2.
D=25 D=\frac{20}{9}
The equation is now solved.
9D^{2}-245D+500=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
9D^{2}-245D+500-500=-500
Subtract 500 from both sides of the equation.
9D^{2}-245D=-500
Subtracting 500 from itself leaves 0.
\frac{9D^{2}-245D}{9}=-\frac{500}{9}
Divide both sides by 9.
D^{2}-\frac{245}{9}D=-\frac{500}{9}
Dividing by 9 undoes the multiplication by 9.
D^{2}-\frac{245}{9}D+\left(-\frac{245}{18}\right)^{2}=-\frac{500}{9}+\left(-\frac{245}{18}\right)^{2}
Divide -\frac{245}{9}, the coefficient of the x term, by 2 to get -\frac{245}{18}. Then add the square of -\frac{245}{18} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
D^{2}-\frac{245}{9}D+\frac{60025}{324}=-\frac{500}{9}+\frac{60025}{324}
Square -\frac{245}{18} by squaring both the numerator and the denominator of the fraction.
D^{2}-\frac{245}{9}D+\frac{60025}{324}=\frac{42025}{324}
Add -\frac{500}{9} to \frac{60025}{324} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(D-\frac{245}{18}\right)^{2}=\frac{42025}{324}
Factor D^{2}-\frac{245}{9}D+\frac{60025}{324}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(D-\frac{245}{18}\right)^{2}}=\sqrt{\frac{42025}{324}}
Take the square root of both sides of the equation.
D-\frac{245}{18}=\frac{205}{18} D-\frac{245}{18}=-\frac{205}{18}
Simplify.
D=25 D=\frac{20}{9}
Add \frac{245}{18} to both sides of the equation.
x ^ 2 -\frac{245}{9}x +\frac{500}{9} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 9
r + s = \frac{245}{9} rs = \frac{500}{9}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{245}{18} - u s = \frac{245}{18} + u
Two numbers r and s sum up to \frac{245}{9} exactly when the average of the two numbers is \frac{1}{2}*\frac{245}{9} = \frac{245}{18}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{245}{18} - u) (\frac{245}{18} + u) = \frac{500}{9}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{500}{9}
\frac{60025}{324} - u^2 = \frac{500}{9}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{500}{9}-\frac{60025}{324} = -\frac{42025}{324}
Simplify the expression by subtracting \frac{60025}{324} on both sides
u^2 = \frac{42025}{324} u = \pm\sqrt{\frac{42025}{324}} = \pm \frac{205}{18}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{245}{18} - \frac{205}{18} = 2.222 s = \frac{245}{18} + \frac{205}{18} = 25
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.