Solve for y
y=\frac{\sqrt{15}i}{6}+\frac{3}{2}\approx 1.5+0.645497224i
y=-\frac{\sqrt{15}i}{6}+\frac{3}{2}\approx 1.5-0.645497224i
Quiz
Complex Number
5 problems similar to:
9 - 6 y + 3 y ^ { 2 } - ( 3 y - y ^ { 2 } ) - y ^ { 2 } - 1 = 0
Share
Copied to clipboard
9-6y+3y^{2}-3y+y^{2}-y^{2}-1=0
To find the opposite of 3y-y^{2}, find the opposite of each term.
9-9y+3y^{2}+y^{2}-y^{2}-1=0
Combine -6y and -3y to get -9y.
9-9y+4y^{2}-y^{2}-1=0
Combine 3y^{2} and y^{2} to get 4y^{2}.
9-9y+3y^{2}-1=0
Combine 4y^{2} and -y^{2} to get 3y^{2}.
8-9y+3y^{2}=0
Subtract 1 from 9 to get 8.
3y^{2}-9y+8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 3\times 8}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -9 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-9\right)±\sqrt{81-4\times 3\times 8}}{2\times 3}
Square -9.
y=\frac{-\left(-9\right)±\sqrt{81-12\times 8}}{2\times 3}
Multiply -4 times 3.
y=\frac{-\left(-9\right)±\sqrt{81-96}}{2\times 3}
Multiply -12 times 8.
y=\frac{-\left(-9\right)±\sqrt{-15}}{2\times 3}
Add 81 to -96.
y=\frac{-\left(-9\right)±\sqrt{15}i}{2\times 3}
Take the square root of -15.
y=\frac{9±\sqrt{15}i}{2\times 3}
The opposite of -9 is 9.
y=\frac{9±\sqrt{15}i}{6}
Multiply 2 times 3.
y=\frac{9+\sqrt{15}i}{6}
Now solve the equation y=\frac{9±\sqrt{15}i}{6} when ± is plus. Add 9 to i\sqrt{15}.
y=\frac{\sqrt{15}i}{6}+\frac{3}{2}
Divide 9+i\sqrt{15} by 6.
y=\frac{-\sqrt{15}i+9}{6}
Now solve the equation y=\frac{9±\sqrt{15}i}{6} when ± is minus. Subtract i\sqrt{15} from 9.
y=-\frac{\sqrt{15}i}{6}+\frac{3}{2}
Divide 9-i\sqrt{15} by 6.
y=\frac{\sqrt{15}i}{6}+\frac{3}{2} y=-\frac{\sqrt{15}i}{6}+\frac{3}{2}
The equation is now solved.
9-6y+3y^{2}-3y+y^{2}-y^{2}-1=0
To find the opposite of 3y-y^{2}, find the opposite of each term.
9-9y+3y^{2}+y^{2}-y^{2}-1=0
Combine -6y and -3y to get -9y.
9-9y+4y^{2}-y^{2}-1=0
Combine 3y^{2} and y^{2} to get 4y^{2}.
9-9y+3y^{2}-1=0
Combine 4y^{2} and -y^{2} to get 3y^{2}.
8-9y+3y^{2}=0
Subtract 1 from 9 to get 8.
-9y+3y^{2}=-8
Subtract 8 from both sides. Anything subtracted from zero gives its negation.
3y^{2}-9y=-8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3y^{2}-9y}{3}=-\frac{8}{3}
Divide both sides by 3.
y^{2}+\left(-\frac{9}{3}\right)y=-\frac{8}{3}
Dividing by 3 undoes the multiplication by 3.
y^{2}-3y=-\frac{8}{3}
Divide -9 by 3.
y^{2}-3y+\left(-\frac{3}{2}\right)^{2}=-\frac{8}{3}+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-3y+\frac{9}{4}=-\frac{8}{3}+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
y^{2}-3y+\frac{9}{4}=-\frac{5}{12}
Add -\frac{8}{3} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{3}{2}\right)^{2}=-\frac{5}{12}
Factor y^{2}-3y+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{3}{2}\right)^{2}}=\sqrt{-\frac{5}{12}}
Take the square root of both sides of the equation.
y-\frac{3}{2}=\frac{\sqrt{15}i}{6} y-\frac{3}{2}=-\frac{\sqrt{15}i}{6}
Simplify.
y=\frac{\sqrt{15}i}{6}+\frac{3}{2} y=-\frac{\sqrt{15}i}{6}+\frac{3}{2}
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}