Evaluate
\frac{101}{15}\approx 6.733333333
Factor
\frac{101}{3 \cdot 5} = 6\frac{11}{15} = 6.733333333333333
Share
Copied to clipboard
\frac{18}{2}-\frac{3}{2}-\left(\frac{8}{3}+8-7-\left(6-3-\frac{2}{5}\right)-\frac{3}{10}\right)
Convert 9 to fraction \frac{18}{2}.
\frac{18-3}{2}-\left(\frac{8}{3}+8-7-\left(6-3-\frac{2}{5}\right)-\frac{3}{10}\right)
Since \frac{18}{2} and \frac{3}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{15}{2}-\left(\frac{8}{3}+8-7-\left(6-3-\frac{2}{5}\right)-\frac{3}{10}\right)
Subtract 3 from 18 to get 15.
\frac{15}{2}-\left(\frac{8}{3}+\frac{24}{3}-7-\left(6-3-\frac{2}{5}\right)-\frac{3}{10}\right)
Convert 8 to fraction \frac{24}{3}.
\frac{15}{2}-\left(\frac{8+24}{3}-7-\left(6-3-\frac{2}{5}\right)-\frac{3}{10}\right)
Since \frac{8}{3} and \frac{24}{3} have the same denominator, add them by adding their numerators.
\frac{15}{2}-\left(\frac{32}{3}-7-\left(6-3-\frac{2}{5}\right)-\frac{3}{10}\right)
Add 8 and 24 to get 32.
\frac{15}{2}-\left(\frac{32}{3}-\frac{21}{3}-\left(6-3-\frac{2}{5}\right)-\frac{3}{10}\right)
Convert 7 to fraction \frac{21}{3}.
\frac{15}{2}-\left(\frac{32-21}{3}-\left(6-3-\frac{2}{5}\right)-\frac{3}{10}\right)
Since \frac{32}{3} and \frac{21}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{15}{2}-\left(\frac{11}{3}-\left(6-3-\frac{2}{5}\right)-\frac{3}{10}\right)
Subtract 21 from 32 to get 11.
\frac{15}{2}-\left(\frac{11}{3}-\left(3-\frac{2}{5}\right)-\frac{3}{10}\right)
Subtract 3 from 6 to get 3.
\frac{15}{2}-\left(\frac{11}{3}-\left(\frac{15}{5}-\frac{2}{5}\right)-\frac{3}{10}\right)
Convert 3 to fraction \frac{15}{5}.
\frac{15}{2}-\left(\frac{11}{3}-\frac{15-2}{5}-\frac{3}{10}\right)
Since \frac{15}{5} and \frac{2}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{15}{2}-\left(\frac{11}{3}-\frac{13}{5}-\frac{3}{10}\right)
Subtract 2 from 15 to get 13.
\frac{15}{2}-\left(\frac{55}{15}-\frac{39}{15}-\frac{3}{10}\right)
Least common multiple of 3 and 5 is 15. Convert \frac{11}{3} and \frac{13}{5} to fractions with denominator 15.
\frac{15}{2}-\left(\frac{55-39}{15}-\frac{3}{10}\right)
Since \frac{55}{15} and \frac{39}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{15}{2}-\left(\frac{16}{15}-\frac{3}{10}\right)
Subtract 39 from 55 to get 16.
\frac{15}{2}-\left(\frac{32}{30}-\frac{9}{30}\right)
Least common multiple of 15 and 10 is 30. Convert \frac{16}{15} and \frac{3}{10} to fractions with denominator 30.
\frac{15}{2}-\frac{32-9}{30}
Since \frac{32}{30} and \frac{9}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{15}{2}-\frac{23}{30}
Subtract 9 from 32 to get 23.
\frac{225}{30}-\frac{23}{30}
Least common multiple of 2 and 30 is 30. Convert \frac{15}{2} and \frac{23}{30} to fractions with denominator 30.
\frac{225-23}{30}
Since \frac{225}{30} and \frac{23}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{202}{30}
Subtract 23 from 225 to get 202.
\frac{101}{15}
Reduce the fraction \frac{202}{30} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}