Evaluate
\frac{4898}{45}\approx 108.844444444
Factor
\frac{2 \cdot 31 \cdot 79}{3 ^ {2} \cdot 5} = 108\frac{38}{45} = 108.84444444444445
Share
Copied to clipboard
\frac{45}{5}-\frac{3}{5}+\frac{6\times 3+2}{3}\times \frac{226}{15}
Convert 9 to fraction \frac{45}{5}.
\frac{45-3}{5}+\frac{6\times 3+2}{3}\times \frac{226}{15}
Since \frac{45}{5} and \frac{3}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{42}{5}+\frac{6\times 3+2}{3}\times \frac{226}{15}
Subtract 3 from 45 to get 42.
\frac{42}{5}+\frac{18+2}{3}\times \frac{226}{15}
Multiply 6 and 3 to get 18.
\frac{42}{5}+\frac{20}{3}\times \frac{226}{15}
Add 18 and 2 to get 20.
\frac{42}{5}+\frac{20\times 226}{3\times 15}
Multiply \frac{20}{3} times \frac{226}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{42}{5}+\frac{4520}{45}
Do the multiplications in the fraction \frac{20\times 226}{3\times 15}.
\frac{42}{5}+\frac{904}{9}
Reduce the fraction \frac{4520}{45} to lowest terms by extracting and canceling out 5.
\frac{378}{45}+\frac{4520}{45}
Least common multiple of 5 and 9 is 45. Convert \frac{42}{5} and \frac{904}{9} to fractions with denominator 45.
\frac{378+4520}{45}
Since \frac{378}{45} and \frac{4520}{45} have the same denominator, add them by adding their numerators.
\frac{4898}{45}
Add 378 and 4520 to get 4898.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}