Solve for x
x=\frac{2}{7}\approx 0.285714286
x=-10
Graph
Share
Copied to clipboard
9\left(x^{2}-4x+4\right)-16\left(x+1\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
9x^{2}-36x+36-16\left(x+1\right)^{2}=0
Use the distributive property to multiply 9 by x^{2}-4x+4.
9x^{2}-36x+36-16\left(x^{2}+2x+1\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
9x^{2}-36x+36-16x^{2}-32x-16=0
Use the distributive property to multiply -16 by x^{2}+2x+1.
-7x^{2}-36x+36-32x-16=0
Combine 9x^{2} and -16x^{2} to get -7x^{2}.
-7x^{2}-68x+36-16=0
Combine -36x and -32x to get -68x.
-7x^{2}-68x+20=0
Subtract 16 from 36 to get 20.
a+b=-68 ab=-7\times 20=-140
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -7x^{2}+ax+bx+20. To find a and b, set up a system to be solved.
1,-140 2,-70 4,-35 5,-28 7,-20 10,-14
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -140.
1-140=-139 2-70=-68 4-35=-31 5-28=-23 7-20=-13 10-14=-4
Calculate the sum for each pair.
a=2 b=-70
The solution is the pair that gives sum -68.
\left(-7x^{2}+2x\right)+\left(-70x+20\right)
Rewrite -7x^{2}-68x+20 as \left(-7x^{2}+2x\right)+\left(-70x+20\right).
-x\left(7x-2\right)-10\left(7x-2\right)
Factor out -x in the first and -10 in the second group.
\left(7x-2\right)\left(-x-10\right)
Factor out common term 7x-2 by using distributive property.
x=\frac{2}{7} x=-10
To find equation solutions, solve 7x-2=0 and -x-10=0.
9\left(x^{2}-4x+4\right)-16\left(x+1\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
9x^{2}-36x+36-16\left(x+1\right)^{2}=0
Use the distributive property to multiply 9 by x^{2}-4x+4.
9x^{2}-36x+36-16\left(x^{2}+2x+1\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
9x^{2}-36x+36-16x^{2}-32x-16=0
Use the distributive property to multiply -16 by x^{2}+2x+1.
-7x^{2}-36x+36-32x-16=0
Combine 9x^{2} and -16x^{2} to get -7x^{2}.
-7x^{2}-68x+36-16=0
Combine -36x and -32x to get -68x.
-7x^{2}-68x+20=0
Subtract 16 from 36 to get 20.
x=\frac{-\left(-68\right)±\sqrt{\left(-68\right)^{2}-4\left(-7\right)\times 20}}{2\left(-7\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -7 for a, -68 for b, and 20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-68\right)±\sqrt{4624-4\left(-7\right)\times 20}}{2\left(-7\right)}
Square -68.
x=\frac{-\left(-68\right)±\sqrt{4624+28\times 20}}{2\left(-7\right)}
Multiply -4 times -7.
x=\frac{-\left(-68\right)±\sqrt{4624+560}}{2\left(-7\right)}
Multiply 28 times 20.
x=\frac{-\left(-68\right)±\sqrt{5184}}{2\left(-7\right)}
Add 4624 to 560.
x=\frac{-\left(-68\right)±72}{2\left(-7\right)}
Take the square root of 5184.
x=\frac{68±72}{2\left(-7\right)}
The opposite of -68 is 68.
x=\frac{68±72}{-14}
Multiply 2 times -7.
x=\frac{140}{-14}
Now solve the equation x=\frac{68±72}{-14} when ± is plus. Add 68 to 72.
x=-10
Divide 140 by -14.
x=-\frac{4}{-14}
Now solve the equation x=\frac{68±72}{-14} when ± is minus. Subtract 72 from 68.
x=\frac{2}{7}
Reduce the fraction \frac{-4}{-14} to lowest terms by extracting and canceling out 2.
x=-10 x=\frac{2}{7}
The equation is now solved.
9\left(x^{2}-4x+4\right)-16\left(x+1\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
9x^{2}-36x+36-16\left(x+1\right)^{2}=0
Use the distributive property to multiply 9 by x^{2}-4x+4.
9x^{2}-36x+36-16\left(x^{2}+2x+1\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
9x^{2}-36x+36-16x^{2}-32x-16=0
Use the distributive property to multiply -16 by x^{2}+2x+1.
-7x^{2}-36x+36-32x-16=0
Combine 9x^{2} and -16x^{2} to get -7x^{2}.
-7x^{2}-68x+36-16=0
Combine -36x and -32x to get -68x.
-7x^{2}-68x+20=0
Subtract 16 from 36 to get 20.
-7x^{2}-68x=-20
Subtract 20 from both sides. Anything subtracted from zero gives its negation.
\frac{-7x^{2}-68x}{-7}=-\frac{20}{-7}
Divide both sides by -7.
x^{2}+\left(-\frac{68}{-7}\right)x=-\frac{20}{-7}
Dividing by -7 undoes the multiplication by -7.
x^{2}+\frac{68}{7}x=-\frac{20}{-7}
Divide -68 by -7.
x^{2}+\frac{68}{7}x=\frac{20}{7}
Divide -20 by -7.
x^{2}+\frac{68}{7}x+\left(\frac{34}{7}\right)^{2}=\frac{20}{7}+\left(\frac{34}{7}\right)^{2}
Divide \frac{68}{7}, the coefficient of the x term, by 2 to get \frac{34}{7}. Then add the square of \frac{34}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{68}{7}x+\frac{1156}{49}=\frac{20}{7}+\frac{1156}{49}
Square \frac{34}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{68}{7}x+\frac{1156}{49}=\frac{1296}{49}
Add \frac{20}{7} to \frac{1156}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{34}{7}\right)^{2}=\frac{1296}{49}
Factor x^{2}+\frac{68}{7}x+\frac{1156}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{34}{7}\right)^{2}}=\sqrt{\frac{1296}{49}}
Take the square root of both sides of the equation.
x+\frac{34}{7}=\frac{36}{7} x+\frac{34}{7}=-\frac{36}{7}
Simplify.
x=\frac{2}{7} x=-10
Subtract \frac{34}{7} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}