Solve for x
x=-\frac{5}{14}\approx -0.357142857
x = -\frac{17}{8} = -2\frac{1}{8} = -2.125
Graph
Share
Copied to clipboard
9\left(x^{2}-4x+4\right)=121\left(x+1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
9x^{2}-36x+36=121\left(x+1\right)^{2}
Use the distributive property to multiply 9 by x^{2}-4x+4.
9x^{2}-36x+36=121\left(x^{2}+2x+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
9x^{2}-36x+36=121x^{2}+242x+121
Use the distributive property to multiply 121 by x^{2}+2x+1.
9x^{2}-36x+36-121x^{2}=242x+121
Subtract 121x^{2} from both sides.
-112x^{2}-36x+36=242x+121
Combine 9x^{2} and -121x^{2} to get -112x^{2}.
-112x^{2}-36x+36-242x=121
Subtract 242x from both sides.
-112x^{2}-278x+36=121
Combine -36x and -242x to get -278x.
-112x^{2}-278x+36-121=0
Subtract 121 from both sides.
-112x^{2}-278x-85=0
Subtract 121 from 36 to get -85.
x=\frac{-\left(-278\right)±\sqrt{\left(-278\right)^{2}-4\left(-112\right)\left(-85\right)}}{2\left(-112\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -112 for a, -278 for b, and -85 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-278\right)±\sqrt{77284-4\left(-112\right)\left(-85\right)}}{2\left(-112\right)}
Square -278.
x=\frac{-\left(-278\right)±\sqrt{77284+448\left(-85\right)}}{2\left(-112\right)}
Multiply -4 times -112.
x=\frac{-\left(-278\right)±\sqrt{77284-38080}}{2\left(-112\right)}
Multiply 448 times -85.
x=\frac{-\left(-278\right)±\sqrt{39204}}{2\left(-112\right)}
Add 77284 to -38080.
x=\frac{-\left(-278\right)±198}{2\left(-112\right)}
Take the square root of 39204.
x=\frac{278±198}{2\left(-112\right)}
The opposite of -278 is 278.
x=\frac{278±198}{-224}
Multiply 2 times -112.
x=\frac{476}{-224}
Now solve the equation x=\frac{278±198}{-224} when ± is plus. Add 278 to 198.
x=-\frac{17}{8}
Reduce the fraction \frac{476}{-224} to lowest terms by extracting and canceling out 28.
x=\frac{80}{-224}
Now solve the equation x=\frac{278±198}{-224} when ± is minus. Subtract 198 from 278.
x=-\frac{5}{14}
Reduce the fraction \frac{80}{-224} to lowest terms by extracting and canceling out 16.
x=-\frac{17}{8} x=-\frac{5}{14}
The equation is now solved.
9\left(x^{2}-4x+4\right)=121\left(x+1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
9x^{2}-36x+36=121\left(x+1\right)^{2}
Use the distributive property to multiply 9 by x^{2}-4x+4.
9x^{2}-36x+36=121\left(x^{2}+2x+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
9x^{2}-36x+36=121x^{2}+242x+121
Use the distributive property to multiply 121 by x^{2}+2x+1.
9x^{2}-36x+36-121x^{2}=242x+121
Subtract 121x^{2} from both sides.
-112x^{2}-36x+36=242x+121
Combine 9x^{2} and -121x^{2} to get -112x^{2}.
-112x^{2}-36x+36-242x=121
Subtract 242x from both sides.
-112x^{2}-278x+36=121
Combine -36x and -242x to get -278x.
-112x^{2}-278x=121-36
Subtract 36 from both sides.
-112x^{2}-278x=85
Subtract 36 from 121 to get 85.
\frac{-112x^{2}-278x}{-112}=\frac{85}{-112}
Divide both sides by -112.
x^{2}+\left(-\frac{278}{-112}\right)x=\frac{85}{-112}
Dividing by -112 undoes the multiplication by -112.
x^{2}+\frac{139}{56}x=\frac{85}{-112}
Reduce the fraction \frac{-278}{-112} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{139}{56}x=-\frac{85}{112}
Divide 85 by -112.
x^{2}+\frac{139}{56}x+\left(\frac{139}{112}\right)^{2}=-\frac{85}{112}+\left(\frac{139}{112}\right)^{2}
Divide \frac{139}{56}, the coefficient of the x term, by 2 to get \frac{139}{112}. Then add the square of \frac{139}{112} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{139}{56}x+\frac{19321}{12544}=-\frac{85}{112}+\frac{19321}{12544}
Square \frac{139}{112} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{139}{56}x+\frac{19321}{12544}=\frac{9801}{12544}
Add -\frac{85}{112} to \frac{19321}{12544} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{139}{112}\right)^{2}=\frac{9801}{12544}
Factor x^{2}+\frac{139}{56}x+\frac{19321}{12544}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{139}{112}\right)^{2}}=\sqrt{\frac{9801}{12544}}
Take the square root of both sides of the equation.
x+\frac{139}{112}=\frac{99}{112} x+\frac{139}{112}=-\frac{99}{112}
Simplify.
x=-\frac{5}{14} x=-\frac{17}{8}
Subtract \frac{139}{112} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}