Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

9\left(x^{2}-2x+1\right)-16=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
9x^{2}-18x+9-16=0
Use the distributive property to multiply 9 by x^{2}-2x+1.
9x^{2}-18x-7=0
Subtract 16 from 9 to get -7.
a+b=-18 ab=9\left(-7\right)=-63
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 9x^{2}+ax+bx-7. To find a and b, set up a system to be solved.
1,-63 3,-21 7,-9
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -63.
1-63=-62 3-21=-18 7-9=-2
Calculate the sum for each pair.
a=-21 b=3
The solution is the pair that gives sum -18.
\left(9x^{2}-21x\right)+\left(3x-7\right)
Rewrite 9x^{2}-18x-7 as \left(9x^{2}-21x\right)+\left(3x-7\right).
3x\left(3x-7\right)+3x-7
Factor out 3x in 9x^{2}-21x.
\left(3x-7\right)\left(3x+1\right)
Factor out common term 3x-7 by using distributive property.
x=\frac{7}{3} x=-\frac{1}{3}
To find equation solutions, solve 3x-7=0 and 3x+1=0.
9\left(x^{2}-2x+1\right)-16=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
9x^{2}-18x+9-16=0
Use the distributive property to multiply 9 by x^{2}-2x+1.
9x^{2}-18x-7=0
Subtract 16 from 9 to get -7.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 9\left(-7\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -18 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 9\left(-7\right)}}{2\times 9}
Square -18.
x=\frac{-\left(-18\right)±\sqrt{324-36\left(-7\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-18\right)±\sqrt{324+252}}{2\times 9}
Multiply -36 times -7.
x=\frac{-\left(-18\right)±\sqrt{576}}{2\times 9}
Add 324 to 252.
x=\frac{-\left(-18\right)±24}{2\times 9}
Take the square root of 576.
x=\frac{18±24}{2\times 9}
The opposite of -18 is 18.
x=\frac{18±24}{18}
Multiply 2 times 9.
x=\frac{42}{18}
Now solve the equation x=\frac{18±24}{18} when ± is plus. Add 18 to 24.
x=\frac{7}{3}
Reduce the fraction \frac{42}{18} to lowest terms by extracting and canceling out 6.
x=-\frac{6}{18}
Now solve the equation x=\frac{18±24}{18} when ± is minus. Subtract 24 from 18.
x=-\frac{1}{3}
Reduce the fraction \frac{-6}{18} to lowest terms by extracting and canceling out 6.
x=\frac{7}{3} x=-\frac{1}{3}
The equation is now solved.
9\left(x^{2}-2x+1\right)-16=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
9x^{2}-18x+9-16=0
Use the distributive property to multiply 9 by x^{2}-2x+1.
9x^{2}-18x-7=0
Subtract 16 from 9 to get -7.
9x^{2}-18x=7
Add 7 to both sides. Anything plus zero gives itself.
\frac{9x^{2}-18x}{9}=\frac{7}{9}
Divide both sides by 9.
x^{2}+\left(-\frac{18}{9}\right)x=\frac{7}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-2x=\frac{7}{9}
Divide -18 by 9.
x^{2}-2x+1=\frac{7}{9}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=\frac{16}{9}
Add \frac{7}{9} to 1.
\left(x-1\right)^{2}=\frac{16}{9}
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{16}{9}}
Take the square root of both sides of the equation.
x-1=\frac{4}{3} x-1=-\frac{4}{3}
Simplify.
x=\frac{7}{3} x=-\frac{1}{3}
Add 1 to both sides of the equation.