Solve for x
x=-\frac{7y}{9}-\frac{10z}{9}-\frac{913}{351}
Solve for y
y=-\frac{9x}{7}-\frac{10z}{7}-\frac{913}{273}
Share
Copied to clipboard
9x-\frac{108}{13}+7\left(y+\frac{11}{39}\right)+10\left(z+\frac{116}{39}\right)=0
Use the distributive property to multiply 9 by x-\frac{12}{13}.
9x-\frac{108}{13}+7y+\frac{77}{39}+10\left(z+\frac{116}{39}\right)=0
Use the distributive property to multiply 7 by y+\frac{11}{39}.
9x-\frac{19}{3}+7y+10\left(z+\frac{116}{39}\right)=0
Add -\frac{108}{13} and \frac{77}{39} to get -\frac{19}{3}.
9x-\frac{19}{3}+7y+10z+\frac{1160}{39}=0
Use the distributive property to multiply 10 by z+\frac{116}{39}.
9x+\frac{913}{39}+7y+10z=0
Add -\frac{19}{3} and \frac{1160}{39} to get \frac{913}{39}.
9x+7y+10z=-\frac{913}{39}
Subtract \frac{913}{39} from both sides. Anything subtracted from zero gives its negation.
9x+10z=-\frac{913}{39}-7y
Subtract 7y from both sides.
9x=-\frac{913}{39}-7y-10z
Subtract 10z from both sides.
9x=-7y-10z-\frac{913}{39}
The equation is in standard form.
\frac{9x}{9}=\frac{-7y-10z-\frac{913}{39}}{9}
Divide both sides by 9.
x=\frac{-7y-10z-\frac{913}{39}}{9}
Dividing by 9 undoes the multiplication by 9.
x=-\frac{7y}{9}-\frac{10z}{9}-\frac{913}{351}
Divide -\frac{913}{39}-7y-10z by 9.
9x-\frac{108}{13}+7\left(y+\frac{11}{39}\right)+10\left(z+\frac{116}{39}\right)=0
Use the distributive property to multiply 9 by x-\frac{12}{13}.
9x-\frac{108}{13}+7y+\frac{77}{39}+10\left(z+\frac{116}{39}\right)=0
Use the distributive property to multiply 7 by y+\frac{11}{39}.
9x-\frac{19}{3}+7y+10\left(z+\frac{116}{39}\right)=0
Add -\frac{108}{13} and \frac{77}{39} to get -\frac{19}{3}.
9x-\frac{19}{3}+7y+10z+\frac{1160}{39}=0
Use the distributive property to multiply 10 by z+\frac{116}{39}.
9x+\frac{913}{39}+7y+10z=0
Add -\frac{19}{3} and \frac{1160}{39} to get \frac{913}{39}.
\frac{913}{39}+7y+10z=-9x
Subtract 9x from both sides. Anything subtracted from zero gives its negation.
7y+10z=-9x-\frac{913}{39}
Subtract \frac{913}{39} from both sides.
7y=-9x-\frac{913}{39}-10z
Subtract 10z from both sides.
7y=-9x-10z-\frac{913}{39}
The equation is in standard form.
\frac{7y}{7}=\frac{-9x-10z-\frac{913}{39}}{7}
Divide both sides by 7.
y=\frac{-9x-10z-\frac{913}{39}}{7}
Dividing by 7 undoes the multiplication by 7.
y=-\frac{9x}{7}-\frac{10z}{7}-\frac{913}{273}
Divide -9x-\frac{913}{39}-10z by 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}