Solve for x
x = \frac{\sqrt{393} + 19}{16} \approx 2.426514225
x=\frac{19-\sqrt{393}}{16}\approx -0.051514225
Graph
Share
Copied to clipboard
9x\left(x-2\right)=x^{2}+x+1
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by x-2.
9x^{2}-18x=x^{2}+x+1
Use the distributive property to multiply 9x by x-2.
9x^{2}-18x-x^{2}=x+1
Subtract x^{2} from both sides.
8x^{2}-18x=x+1
Combine 9x^{2} and -x^{2} to get 8x^{2}.
8x^{2}-18x-x=1
Subtract x from both sides.
8x^{2}-19x=1
Combine -18x and -x to get -19x.
8x^{2}-19x-1=0
Subtract 1 from both sides.
x=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\times 8\left(-1\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, -19 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-19\right)±\sqrt{361-4\times 8\left(-1\right)}}{2\times 8}
Square -19.
x=\frac{-\left(-19\right)±\sqrt{361-32\left(-1\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-19\right)±\sqrt{361+32}}{2\times 8}
Multiply -32 times -1.
x=\frac{-\left(-19\right)±\sqrt{393}}{2\times 8}
Add 361 to 32.
x=\frac{19±\sqrt{393}}{2\times 8}
The opposite of -19 is 19.
x=\frac{19±\sqrt{393}}{16}
Multiply 2 times 8.
x=\frac{\sqrt{393}+19}{16}
Now solve the equation x=\frac{19±\sqrt{393}}{16} when ± is plus. Add 19 to \sqrt{393}.
x=\frac{19-\sqrt{393}}{16}
Now solve the equation x=\frac{19±\sqrt{393}}{16} when ± is minus. Subtract \sqrt{393} from 19.
x=\frac{\sqrt{393}+19}{16} x=\frac{19-\sqrt{393}}{16}
The equation is now solved.
9x\left(x-2\right)=x^{2}+x+1
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by x-2.
9x^{2}-18x=x^{2}+x+1
Use the distributive property to multiply 9x by x-2.
9x^{2}-18x-x^{2}=x+1
Subtract x^{2} from both sides.
8x^{2}-18x=x+1
Combine 9x^{2} and -x^{2} to get 8x^{2}.
8x^{2}-18x-x=1
Subtract x from both sides.
8x^{2}-19x=1
Combine -18x and -x to get -19x.
\frac{8x^{2}-19x}{8}=\frac{1}{8}
Divide both sides by 8.
x^{2}-\frac{19}{8}x=\frac{1}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}-\frac{19}{8}x+\left(-\frac{19}{16}\right)^{2}=\frac{1}{8}+\left(-\frac{19}{16}\right)^{2}
Divide -\frac{19}{8}, the coefficient of the x term, by 2 to get -\frac{19}{16}. Then add the square of -\frac{19}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{19}{8}x+\frac{361}{256}=\frac{1}{8}+\frac{361}{256}
Square -\frac{19}{16} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{19}{8}x+\frac{361}{256}=\frac{393}{256}
Add \frac{1}{8} to \frac{361}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{19}{16}\right)^{2}=\frac{393}{256}
Factor x^{2}-\frac{19}{8}x+\frac{361}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{19}{16}\right)^{2}}=\sqrt{\frac{393}{256}}
Take the square root of both sides of the equation.
x-\frac{19}{16}=\frac{\sqrt{393}}{16} x-\frac{19}{16}=-\frac{\sqrt{393}}{16}
Simplify.
x=\frac{\sqrt{393}+19}{16} x=\frac{19-\sqrt{393}}{16}
Add \frac{19}{16} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}