Solve for x
x=\frac{\sqrt{66}}{2}+4\approx 8.062019202
x=-\frac{\sqrt{66}}{2}+4\approx -0.062019202
Graph
Share
Copied to clipboard
18x=2x^{2}+2x-1
Multiply both sides of the equation by 2.
18x-2x^{2}=2x-1
Subtract 2x^{2} from both sides.
18x-2x^{2}-2x=-1
Subtract 2x from both sides.
16x-2x^{2}=-1
Combine 18x and -2x to get 16x.
16x-2x^{2}+1=0
Add 1 to both sides.
-2x^{2}+16x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-16±\sqrt{16^{2}-4\left(-2\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 16 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\left(-2\right)}}{2\left(-2\right)}
Square 16.
x=\frac{-16±\sqrt{256+8}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-16±\sqrt{264}}{2\left(-2\right)}
Add 256 to 8.
x=\frac{-16±2\sqrt{66}}{2\left(-2\right)}
Take the square root of 264.
x=\frac{-16±2\sqrt{66}}{-4}
Multiply 2 times -2.
x=\frac{2\sqrt{66}-16}{-4}
Now solve the equation x=\frac{-16±2\sqrt{66}}{-4} when ± is plus. Add -16 to 2\sqrt{66}.
x=-\frac{\sqrt{66}}{2}+4
Divide -16+2\sqrt{66} by -4.
x=\frac{-2\sqrt{66}-16}{-4}
Now solve the equation x=\frac{-16±2\sqrt{66}}{-4} when ± is minus. Subtract 2\sqrt{66} from -16.
x=\frac{\sqrt{66}}{2}+4
Divide -16-2\sqrt{66} by -4.
x=-\frac{\sqrt{66}}{2}+4 x=\frac{\sqrt{66}}{2}+4
The equation is now solved.
18x=2x^{2}+2x-1
Multiply both sides of the equation by 2.
18x-2x^{2}=2x-1
Subtract 2x^{2} from both sides.
18x-2x^{2}-2x=-1
Subtract 2x from both sides.
16x-2x^{2}=-1
Combine 18x and -2x to get 16x.
-2x^{2}+16x=-1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+16x}{-2}=-\frac{1}{-2}
Divide both sides by -2.
x^{2}+\frac{16}{-2}x=-\frac{1}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-8x=-\frac{1}{-2}
Divide 16 by -2.
x^{2}-8x=\frac{1}{2}
Divide -1 by -2.
x^{2}-8x+\left(-4\right)^{2}=\frac{1}{2}+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=\frac{1}{2}+16
Square -4.
x^{2}-8x+16=\frac{33}{2}
Add \frac{1}{2} to 16.
\left(x-4\right)^{2}=\frac{33}{2}
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{\frac{33}{2}}
Take the square root of both sides of the equation.
x-4=\frac{\sqrt{66}}{2} x-4=-\frac{\sqrt{66}}{2}
Simplify.
x=\frac{\sqrt{66}}{2}+4 x=-\frac{\sqrt{66}}{2}+4
Add 4 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}